
Software Architecture
for

Paychex Out of Office
Application

Version 2.3

Prepared by:
Ian Dann

Daquanne Dwight
Tom Eiffert

Elysia Haight

Rochester Institute of Technology
Paychex

March 10, 2013

Revision History
Version Revision Date Changes Made Justification Authors

Page 1 of 9

1.0 1/15/13 Initial Revision Creation of
template

Elysia Haight

1.1 1/15/13 Added and
completed
Technologies
and
Justifications
Section

Final decision
on technologies
made

Ian Dann
Daquanne
Dwight
Tom Eiffert
Elysia Haight

2.0 1/22/13 Inserted view
diagrams,
completed
missing sections

Completed
second draft

Ian Dann
Daquanne
Dwight
Tom Eiffert
Elysia Haight

2.1 1/27/13 Updated data
view

Updated data
view

Daquanne
Dwight

2.2 1/31/13 Updated data
view

Updated data
view

Daquanne
Dwight

2.3 3/10/13 Updated data
view

Updated data
view

Daquanne
Dwight

Page 2 of 9

1. Introduction

1.1 Purpose
This document provides a comprehensive architectural overview of the system, using a number
of different architectural views to depict different aspects of the system. It is intended to capture
and convey the significant architectural decisions which have been made on the system.

1.2 Overview
This document is organized to first detail technologies utilized in the development of the
software, along with reasons and justifications. The goals of the system are then listed, followed
by the architectural views. Finally, definitions and references are available.

2. Technologies and Justifications

2.1 Programming Language

2.1.1 C#
C# is a very powerful language. Able to be utilized for standalone desktop applications as well
as server-side functionality for web applications, C# is quickly becoming the go-to language for
most large companies. It is strongly supported and flexible, allowing for simple library inclusion
through the usage of DLLs.

C# will be used in the Paychex Out of Office Application to implement server-side functionality
of the system. This will allow for use of plugins to access our database (see Section 2.2), LDAP
(see Section 2.4), and PDF report generators (see Section 2.3).

2.1.2 ASP.net
ASP.net is a server-side web application framework that produces dynamic web pages. It
combines static HTML markup and dynamic definitions of server-side Web/User Controls. When
paired with C#, complex web application development is greatly simplified.

The MVC Framework will be utilized to enforce the Model View Controller architectural pattern
used in this project.

2.1.3 JavaScript (jQuery)

Page 3 of 9

jQuery, an open-source library built on JavaScript, will be used to implement client-side
functionality in the project. jQuery offers all the same functionality as JavaScript, with simplified
implementation.

2.2 Database

2.2.1 MySQL
MySQL is a relational database provided by Oracle. MySQL will be used as the database for all
backend storage. MySQL is free/open source, has a large community, and is well documented.

2.2.2 MySQL Connector/.Net
MySQL Connector are drivers provided by Oracle to connect .Net applications to a MySQL
database.

2.3 PDF Reporting Tools

2.3.1 PDFsharp
PDF sharp provides an easy solution for processing PDF documents at runtime. It is a .NET
library that is available to use with any of the .NET languages and is open source with MIT
licensing. It’s object model easy enough to understand yet powerful enough to create PDF’s
from any text source.

2.4 Email Integration

2.5 LDAP

2.5.1 LDAP C# Tie-In
A C# Library created to allow of easier interfacing with LDAP systems. This will be utilized to
connect to existing Paychex systems with minimal difficulty.

2.6 Scheduler

2.6.1 Quartz.NET
Quartz.NET is a job scheduler for .NET framework. It allows jobs to be repeatedly executed
based off time of day and day of the week.

Page 4 of 9

3. Architectural Goals and Constraints
The main goal of the Paychex Out of Office is to achieve usability. This includes the system’s
ease of use, ease of learnability, and pleasant aesthetics. The system is to be optimized for
mobile use, with computer use as a secondary concern.

The system is also intended to be reliable; system downtime is to be minimal, and scheduled
tasks should operate at the designated times.

4. Architectural Representation
The architectural representation enumerates the views that will describe and visualize the
major components of the system and how they interact. Each view is described, displayed,
then components are explained for ease of understanding. These views are high-level and
generalized, and are not a solid representation of the specific system design.

Section 5 Deployment View, Section 6 Layer View, and Section 7 Layer View comprise the
system’s architectural representation.

5. Deployment View

5.1 Overview
The Deployment View shows what is necessary for system execution. The system-external
software and hardware components are listed to ensure a valid setup has been created for
testing and deployment purposes.

Page 5 of 9

5.2 Deployment Architecture

5.2.1 Client
The following operating systems are to be supported by the system: iOS 4+ and Android 4.0+.
The client browser running the application requires Javascript.

5.2.2 Server
 The server operating system is to be Windows Server 2008 R2. The server must have the
following applications/services (and minimum versions) installed to perform:

IIS: 7.5
ASP.NET: 4.0
Scheduler: Quartz.NET 2.1.2
Email Service: Papercut
Database: MySQL

5.2.3 LDAP Server
 TBD

6. Layer View

Page 6 of 9

6.1 Overview
The layer view displays the separation of concerns in terms of the system’s modules, and
the flow of communication between the layers. Our system is designed to be linear, such that
requests from the highest layers are handled by the layer immediately below it.

6.2 Layers

6.2.1 View Layer
The View Layer contains the implementation of the web pages. It interacts with the controller
layer to display relevant data on the page.

6.2.2 Processing Layer
The Processing Layer contains the controllers (utilized for the MVC architecture) and the
Scheduler. The controller classes handle communications between the Data and View Layers,
providing a separation of concerns. The scheduler communicates with the Data Layer to
perform its designated task(s).

6.2.3 Data Layer

Page 7 of 9

The Data Layer stores web page information during run time, and retrieves/organizes data
retrieved from the Persistence Layer.

6.2.4 Persistence Layer
The Persistence Layer contains any persistent storage media. It currently contains the
database, which is accessed by the Model Layer.

7. Data View
Below is the database schema representing how data is to be organized in a relational
database:

Page 8 of 9

8. Quality
The system’s usability is supported in the architecture by keeping a valid separation of concerns
between layers. This is intended to aide system learnability. The user interface is also designed
to be as consistent between pages as possible.

9. Definitions, Acronyms, and Abbreviations
● DLL - Dynamic Link Library; Microsoft’s implementation of linking libraries that may

contain any combination of code, data, or resources.
● MVC - Model, View Controller; An architectural design separating the background work

from the user interface

10. References

Page 9 of 9

