
Test Plan
for

Paychex Out of Office
Application

Version 2.0

Prepared by:
Ian Dann

Daquanne Dwight
Tom Eiffert

Elysia Haight

Rochester Institute of Technology
Paychex

March 10, 2013

Page 1 of 12

Revision History
Version Revision Date Changes Made Justification Author

1.0 2/14/13 Initial Revision Creation of
template

Ian Dann
Daquanne
Dwight
Tom Eiffert
Elysia Haight

1.1 2/18/13 Completed
missing sections

Completed test
plan document

Elysia Haight

2.0 3/10/13 Updated to
correct defects
from bug tracker

Some out-of-
date information
contained

Elysia Haight

Page 2 of 12

1. Introduction
This test approach document describes the appropriate strategies, processes, workflows and
methodologies used to plan, organize, execute and manage testing of the Paychex Out of Office
(OOO) application.

1.1 Scope

1.1.1 In Scope
The Paychex OOO Test Plan defines the unit, integration, system, regression, and Client
Acceptance testing approach. The test scope includes the following:

● Testing of all functional, application performance, security and use case requirements
listed in the Requirements Document [1]

● Heuristic evaluations for user interface
● Cognitive walkthroughs of user interface

1.1.2 Out of Scope
The following are considered out of scope for Paychex OOO application Test Plan and testing
scope:

● Functional requirements testing for systems outside Paychex OOO
○ LDAP
○ Email service

● Acceptance testing on devices other than those operating Android 4.0 or iOS 4.
● Acceptance testing on tablets
● Testing while accessing Paychex’s LDAP server

1.2 Quality Objective

1.2.1 Primary Objective
A primary objective of testing application systems is to: assure that the system meets the full
requirements, including quality requirements (AKA: Non-functional requirements) and fit metrics
for each quality requirement and satisfies the use case scenarios and maintains the quality
of the product. At the end of the project development cycle, the sponsors should find that the
project has met or exceeded all of their expectations as detailed in the requirements.

Any changes, additions, or deletions to the requirements document and the use case
description will be documented and tested at the highest level of quality allowed within the
remaining time of the project.

1.2.2 Secondary Objective
The secondary objective of testing application systems will be to: identify and expose all issues
and associated risks, communicate all known issues to the project team, and ensure that all
issues are addressed in an appropriate matter before release. As an objective, this requires
careful and methodical testing of the application to first ensure all areas of the system are
scrutinized and, consequently, all issues (bugs) found are dealt with appropriately.

Page 3 of 12

1.3 Roles and Responsibilities

1.3.1 Project Team Members
Software Engineering students at Rochester Institute of Technology participating in Senior
Project and undertake development activities for the Paychex OOO Application. Responsible
to:

(a) Develop the system/application

(b) Develop Use cases and requirements in collaboration with the Project Sponsors

(c) Conduct Unit, system, regression and integration testing

(d) Support user acceptance testing

1.3.2 Project Sponsors
Paychex employees representing Paychex as the customer. Responsible to:

(a) Contribute to use case and requirement development through review

(b) Conduct full user acceptance and end-to-end testing at completion of the product;
this includes reporting results

1.4 Assumptions for Test Execution
Below are some minimum assumptions made in order to test the Paychex OOO Application:

● For User Acceptance testing, the Project Team members have completed unit, system,
and integration testing and met all the Requirement’s based on the Requirements
Document.

● User Acceptance testing will be conducted by the Project Sponsors
● Project Team Members will support and provide appropriate guidance to the Project

Sponsors to conduct testing.

1.5 Constraints for Test Execution
Below are some identified constraints for test execution:

● Project Sponsors should clearly understand on test procedures and recording a defect or
enhancement.

● YouTrack is available on the team server
● Developer will support ongoing testing activities based on priorities
● Test scripts must be approved by regression testing lead
● The acceptance testing lead cannot execute developed test plan. This must be done by

other team members and the project sponsors.

Page 4 of 12

2. Test Methodology
2.1 Purpose

2.1.1 Overview
The purpose of the Test Plan is to achieve the following:
● Define testing strategies for testing all the of functional and quality (non-functional)

requirements outlined for the product
● Define bug-tracking procedures
● Identify testing risks
● Identify required resources and related information
● Provide testing schedule

2.1.2 Build Tests

2.1.2.1 Unit Testing (Multiple)
Project Team members will develop and perform unit tests of controller and model components
during the development of each component in order to ensure that each class abides by the
interface and communication expectations. The unit testing procedure will follow the Test-Driven
Development (TDD) model, in that unit tests will be created and run before controller and model
classes are completed. Each change to a class will require running of the unit tests.

2.1.3 Milestone Tests
2.1.3.1 Regression Testing
At the completion of acceptance tests for each release, automated tests are to be developed
and run at regular intervals to ensure that subsequent modifications to the system do not
introduce regressions.

2.1.4 Release Tests
2.1.4.1 UsabilityTesting
To ensure the system is usable, before submission of the completed user interface (UI),
cognitive walkthroughs and heuristic evaluations will be performed.

A cognitive walkthrough involves defining a set of tasks that a user should accomplish through
the user interface, with simple steps to accomplish and expectations of outcome. A collection
of unaffiliated people representing the end user groups are given the task and a wireframe
representation of the UI, and asked to complete the task without assistance. The UI is evaluated
based on the time it takes for users to complete the tasks, and how many needed assistance.

Heuristic evaluations require the team to collaborate on evaluating the designed user interface
given the following heuristics:

● Visibility of system status:
○ The system should always keep users informed about what is going on, through

appropriate feedback within reasonable time.
● Match between system and the real world:

Page 5 of 12

○ The system should speak the user's language, with words, phrases and concepts
familiar to the user, rather than system-oriented terms. Follow real-world
conventions, making information appear in a natural and logical order.

● User control and freedom:
○ Users often choose system functions by mistake and will need a clearly

marked "emergency exit" to leave the unwanted state without having to go
through an extended dialogue. Support undo and redo.

● Consistency and standards:
○ Users should not have to wonder whether different words, situations, or actions

mean the same thing. Follow platform conventions.
● Error prevention:

○ Even better than good error messages is a careful design which prevents a
problem from occurring in the first place. Either eliminate error-prone conditions
or check for them and present users with a confirmation option before they
commit to the action.

● Recognition rather than recall:
○ Minimize the user's memory load by making objects, actions, and options

visible. The user should not have to remember information from one part of the
dialogue to another. Instructions for use of the system should be visible or easily
retrievable whenever appropriate.

● Flexibility and efficiency of use:
○ Accelerators—unseen by the novice user—may often speed up the interaction

for the expert user such that the system can cater to both inexperienced and
experienced users. Allow users to tailor frequent actions.

● Aesthetic and minimalist design:
○ Dialogues should not contain information which is irrelevant or rarely needed.

Every extra unit of information in a dialogue competes with the relevant units of
information and diminishes their relative visibility.

● Help users recognize, diagnose, and recover from errors:
○ Error messages should be expressed in plain language (no codes), precisely

indicate the problem, and constructively suggest a solution.
● Help and documentation:

○ Even though it is better if the system can be used without documentation, it may
be necessary to provide help and documentation. Any such information should
be easy to search, focused on the user's task, list concrete steps to be carried
out, and not be too large.

2.1.4.2 Acceptance Testing
Acceptable testing is to be preformed by the Team as well as the Project Sponsors based on
requirements documented in the Requirements Document and use cases for each release, after
the system has been demonstrated by the Project Team members. The Project Sponsors will
provide feedback during the regular sponsor meetings and over email so that all test results can
be documented and addressed.

2.1.5 Testing Completeness Criteria
A test is considered to have been completed successfully if the result of test meets the expected
results as specified in the Requirements Document.

Page 6 of 12

2.3 Bug Regression
Bug regression testing will be conducted throughout each of the four releases. When a bug
is found in a release and fixed it will still be re-tested on all of the following releases. If a fixed
bug becomes active again, it will be documented and set as a top priority to fix. Development
team will equally split the bug regression testing across the system. All recurring bugs will be
designated to the individual on the development team with the most knowledge regarding the
bug.

2.4 Bug Triage
Bug Triaging will be performed weekly at each Project Team member meeting. All Project Team
members should be involved in the triage meetings. The purpose of the triage is to determine
the type of resolution for each bug and to prioritize and determine a schedule for all “To Be
Fixed Bugs’. Team members will then assign the bugs to the appropriate person for fixing and
report the resolution of each bug back into the bug tracker system. The Project Coordinator will
be responsible for tracking and reporting on the status of all bug resolutions.

2.5 Test Completeness
Testing will be considered complete when the following conditions have been met:

2.5.1 Standard Conditions
● When Project Team members and the Project Sponsors agree that testing is complete, the

application is stable, and agree that the application meets the functional requirements.
● Automated tests of all areas have passed.
● All priority 1 and 2 bugs have been resolved and closed.
● Project Sponsors approves the test completion.

2.5.2 Bug Reporting & Triage Conditions
The following bug reporting and triage conditions will be submitted and evaluated to measure
current status:

● Bug find rate
○ Expected to indicate a decreasing trend
○ If not decreasing, reevaluate designs and implementations

● But severity distribution
○ Expected steady decrease in Severity 1 and 2 bugs discovered

● No ‘Must Fix’ bugs remaining after sustained testing

3. Test Deliverables
Testing will provide specific deliverables during the project. These deliverables fall into three
basic categories: Documents, Test Cases / Bug Write-ups, and Reports. Here is a diagram
indicating the dependencies of the various deliverables:

Page 7 of 12

As the diagram above shows, there is a progression from one deliverable to the next. Each
deliverable has its own dependencies, without which it is not possible to fully complete the
deliverable.

The following page contains a matrix depicting all of the deliverables that Testing will use.

3.1 Deliverables Matrix

The following list of artifacts are process-driven and will be produced during the testing
lifecycle(s).

Deliverable
Documents
 Test Approach
 Test Plan
 Test Schedule
Test Case / Bug Write-Ups
 Test Cases / Results
 Test Coverage Reports
 YouTrack Bug tracker for bug reporting
Reports
Test results report
 Test Final Report - Sign-Off

Page 8 of 12

3.2 Documents

3.2.1 Test Plan
The purpose of the Test Plan document is to:
● Specify the construction of test cases
● Includes lists of test case areas and test objectives for each of the components to be tested
● Break the product down into distinct areas and identify features of the product that are to be

tested.
● Specify the procedures to be used for testing sign-off and product release.
● Indicate the tools used to test the product.
● Indicate the contact persons responsible for various areas of the project.
● Specify criteria for acceptance of functionality

3.2.2 Requirements Traceability Matrix
A Requirements Traceability Matrix (RTM) [2] is used to link the test scenarios to the
requirements and use cases. Requirements traceability is defined as the ability to describe and
follow the life of a requirement, in both a forward and backward direction (i.e. from its origins,
through its development and specification, to its subsequent deployment and use, and through
periods of ongoing refinement and iteration in any of these phases).

3.3 Defect Tracking & Debugging

3.3.1 Testing Workflow
In order to test a work flow, a unit test, individual code/documentation review, acceptance test,
or regression test must first be performed. If a defect or bug is found, it is to be submitted to
YouTrack with the following information:

● Detailed description of the bug/defect
● Subsystem relevant
● Asignee
● Priority
● Severity
● State (default to submitted)

After successful submission, a different team member is to review the defect. Should they
agree that this is an issue, they are to change the state to “open”. The originating developer
is expected to correct the defect, and change the state to “fixed” afterwards. The opening
developer is expected to test for correctness, and change the state to “closed” after testing.
Comments may be supplied to discuss the state of the defect.

3.3.2 Defect reporting using YouTrack
ALL defects should be logged using YouTrack, to address and debug defects. Developers will
update the defect list on YouTrack and notify the requester after the defect has been resolved.
Defect reporting is expected to be polite and non-accusational; accusations as to whose fault a

Page 9 of 12

bug is are not to be tolerated, and instead any bug is the responsibility of the team as a whole.

All High priority defects should be addressed within 2 days of the request and resolved/closed
within 3 days of the initial request

All Medium priority defects should be addressed within 4 days of the request and resolved/
closed within 5 days of the initial request

All Low priority defects should be resolved/closed no later than 7 days of the initial request.

3.4 Reports
The acceptance, usability, regression, and unit test leads are expected to oversee and report on
the state of the testing for their role at least once during each release phase. The reports are to
be verbal and informal, occurring during the weekly team meeting.

3.5 Responsibility Matrix
The following test role responsibility matrix indicates the manager of each aspect of testing.
Although all developers are expected to participate in each area of testing, it is up to the
manager to determine testing completeness and validity for their assigned area.

Name Testing Role

Ian Dann Acceptance Testing

Daquanne Dwight Regression Testing

Tom Eiffert Usability Testing

Elysia Haight Unit Testing

4. Resource & Environment Needs

4.1 Testing Tools

4.1.1 Tracking Tools
YouTrack bug tracker is used to enter and track all bugs and project issues. The Test Lead is
responsible for maintaining the YouTrack database.

4.2 Test Environment

Page 10 of 12

4.2.1 Hardware
● Iphone 4 or newer
● Android 4.0 Phone with 256MB or more of RAM

4.2.2 Software
● Supported web browser (Safari, Chrome, Firefox, native browser)

4.3 Bug Severity and Priority Definition
Bug Severity and Priority fields are both very important for categorizing bugs and prioritizing if
and when the bugs will be fixed. The bug Severity and Priority levels will be defined as outlined
in the following tables below. Testing will assign a severity level to all bugs. The Test Lead will
be responsible to see that a correct severity level is assigned to each bug.

4.3.1 Severity List
The tester entering a bug into YouTrack is also responsible for entering the bug Severity.

Severity ID Severity Level Severity Description

1 Critical The application crashes or the bug causes non-
recoverable conditions. System crashes, GP Faults,
or database or file corruption, or potential data loss,
program hangs requiring reboot are all examples of a
Sev. 1 bug.

2 High Major system component unusable due to failure or
incorrect functionality. Sev. 2 bugs cause serious
problems such as a lack of functionality, or insufficient
or unclear error messages that can have a major impact
to the user, prevents other areas of the app from being
tested, etc. Sev. 2 bugs can have a work around, but
the work around is inconvenient or difficult.

3 Medium Incorrect functionality of component or process. There is
a simple work around for the bug if it is Sev. 3.

4 Minor Documentation errors or signed off severity 3 bugs.

4.3.2 Priority List

Priority ID Priority Level Priority Description

5 Must Fix This bug must be fixed immediately; the product cannot
ship with this bug.

Page 11 of 12

4 Should Fix These are important problems that should be fixed as
soon as possible. It would be an embarrassment to the
company if this bug shipped.

3 Fix When Have
Time

The problem should be fixed within the time available. If
the bug does not delay shipping date, then fix it.

2 Low Priority It is not important (at this time) that these bugs be
addressed. Fix these bugs after all other bugs have
been fixed.

1 Trivial Enhancements/ Good to have features incorporated-
just are out of the current scope.

4.4 Bug Reporting
The Test Lead will be responsible for managing the bug reporting process. YouTrack will be
used to report and maintain any discovered bugs. Team members will enter their data into
YouTrack following the field entry definitions below.

5. Definitions
TERM/ACRONYM DEFINITION

OOO Out of Office

UI User Interface

6. References
[1] Requirements Document.docx
[2] Requirements Traceability Matrix

Page 12 of 12

