
Session T1A

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T1A-1

Thinking Inside the Box: A Multi-Disciplinary
Real-Time and Embedded Systems Course Sequence

James R. Vallino1 and Roy S. Czernikowski2

1 James R. Vallino, Dept. of Software Engineering, Rochester Institute of Technology, 134 Lomb Memorial Dr., Rochester, NY 14623, jvallino@mail.rit.edu
2 Roy S. Czernikowski, Dept. of Computer Engineering, Rochester Institute of Technology, 83 Lomb Memorial Dr. Rochester, NY 14623, rsceec@rit.edu

Abstract – Small electronic products for the mass market
are increasing in complexity with the incorporation of
programmable components. The software in these devices
has constraints that are markedly different from software
designed for a general-purpose computer. Most computing
curricula deal almost exclusively with developing software
for that general-purpose class. Real-time and embedded
systems have increased in complexity to the point that
their development is no longer within the expertise of a
single discipline. Developers now must be cognizant of
software engineering design methodologies and underlying
hardware constraints. RIT is addressing this by developing
a three-course sequence of cross-disciplinary real-time and
embedded systems courses. We are teaching these courses
in a studio-lab environment teaming computer engineering
and software engineering students. The courses will
introduce students to programming both microcontrollers
and more sophisticated targets, use of a commercial real-
time operating system and development environment,
modeling and performance engineering of these systems,
and their interactions with physical systems.

Index Terms – Embedded systems, performance modeling,
real-time systems, real-time systems curriculum.

INTRODUCTION

Embedded computers are ubiquitous, often in common
products where they are invisible to the user. These embedded
processors provide special purpose functionality as opposed to
the general-purpose applications familiar to desktop computer
users. A recent report [10] estimates that the typical
household has 100 processors in its confines. By 2006 the
number of such processors is expected to double. What is
more, the growth rate for embedded processors far exceeds
that of traditional computers. For this reason, educating our
current engineering students in the best practices for real-time
and embedded systems development is of great importance.

Many of these real-time and embedded systems directly
interact with sensors and actuators or are safety critical
components within larger systems. This imposes significant
system constraints with respect to response time, platform
architecture and safety considerations not found in general-
purpose applications. The standard computing curricula
concentrate primarily on general-purpose desktop applications
and do not provide students with the opportunity to gain the

necessary skills for engineering software in real-time and
embedded systems.

REAL-TIME AND EMBEDDED SYSTEMS AT RIT

In the computer engineering program, senior projects often
focus on real-time and embedded systems, but there was no
formal instruction in the engineering of these systems. The
software engineering program had an embedded systems
application domain comprising three courses: two standard
operating systems courses offered by computer science and a
concurrent programming course from computer engineering.
None of these courses directly addresses issues in developing
real-time or embedded software; they were chosen because
they were the closest courses relevant to the domain.

We decided that the best way to address these
shortcomings in the real-time and embedded domain in both
the computer engineering and software engineering curricula
was to adopt a cross-disciplinary approach. The presence of
students from both programs created a unique opportunity for
synergy at Rochester Institute of Technology (RIT). The
computer engineering students possess significant knowledge
of electronics and control systems along with software
development skills at the lower-levels. The software
engineering students possess significant knowledge of how to
engineer complex software systems including the design and
modeling of those systems. They possess skills focused on the
engineering of software that are more fully developed than for
a student in the typical computer science program.
Developing software for real-time and embedded systems is
where the skills of these two groups intersect.

In July, 2003, we started work on the laboratory and the
development of a three-course sequence. Each of these upper-
division courses is four academic quarter credit hours and
meets for ten weeks of classes having a pair of two-hour
studio sessions per week. These courses are cross-listed in the
software engineering and computer engineering programs.
The course curricula are delivered in a studio-lab environment
where we mix lecture material with hands-on exercises and
projects in a flexible format. The studio-lab is configured with
twelve development stations. Registration is initially
controlled with the goal of having an even mix between
students from the two programs. To the extent possible we
ensure that all project teams have a member from both
computer engineering and software engineering. The students
will bring together expertise from two domains and apply a

Session T1A

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T1A-2

common engineering approach for solving real-time and
embedded system development problems. To this point, we
have offered the first two courses in the sequence several
times. The third course is currently being offered in the Spring
2005 term. The remainder of this paper describes our
laboratory facilities, the syllabus for the three courses we
developed and the initial results of the internal and external
evaluation of the program.

Our funding came from the award of an NSF Course,
Curriculum and Laboratory Improvement Adaptation and
Implementation grant. We identified the School of Computing
and Software Engineering at Southern Polytechnic State
University and the Department of Computer Science and
Engineering at Arizona State University as the collaborating
institutions that would provide course materials for adaptation
into the courses we developed.

LABORATORY HARDWARE FACILITIES

The studio lab developed for these courses consists of twelve
student stations and an instructor’s station. The instructor’s
station is configured with classroom control software that
enables the capture, control and display of any of the student
stations on the classroom video projector. Each student station
is positioned to allow a pair of students to work together. Each
station has a modern personal computer for software
development and a 486-based single board computer as a
target system. We are using a Diamond Systems [1] pc-104
board with timers, A/D converters, D/A converters, and digital
I/O.

To reduce the clutter in the student’s work area we
eliminated the second monitor often attached to the target
system. Students can view the output from the target system in
a number of ways. For text-based standard output the target
system development software provides a redirected console on
the development system. We also have the VGA output
converted to S-video and then fed into a USB S-video
digitizer. The digitizer’s software provides a picture-in-
picture display. With the converter’s zoom and panning
capabilities students see the VGA output. Finally, for projects
that are generating VGA graphics output the student can view
the full resolution video through the second input channel on
the development station’s dual-input monitor.

For the experiments involving programming a
microcontroller, each station is also provided with a Motorola
68HC12 board, a custom designed interface board on which is
mounted the microcontroller board, a custom binary LED-
switch board for elementary binary input and output, a signal
generator and a power supply. The laboratory currently has
two oscilloscopes that are moved from station to station, as
needed.

The last pieces of hardware to mention are primarily used
in the third course in the sequence. This course covers
performance engineering of real-time and embedded systems.
To motivate the need for system tuning of real-time systems
we use the control of physical systems. The two systems we
choose for the laboratory are from Quanser Systems [8]. We
selected their inverted pendulum and ball and balance beam

systems. The last component of equipment in the laboratory is
a Digilent Spartan 3 FPGA board [2]. Also in the third course
the students experiment with hardware/software co-design
using this FPGA board. Each student station has one of these
boards.

LABORATORY SOFTWARE FACILITIES

There is a set of software tools to complement the hardware in
the laboratory. The development stations are running the
Windows XP Professional operating system. The MGTEK
MiniIDE [7] supports assembly language programming on the
68HC12 microcontroller. We received a software grant from
Wind River Systems [11] allowing the use of VxWorks and
the Tornado development system. This is the commercial
real-time operating system that the students work with in the
laboratory. Matlab and Simulink from The MathWorks [6] are
used for simulating and controlling the Quanser experiments.
We also received software grants from IBM [4] for the
Rational Rose development suite and Rational Rose Real-
Time as UML modeling tools. Finally, the students also work
with Rhapsody from I-Logix [5] as a UML modeling tool.
Rhapsody’s statechart modeling and code generation features
are used heavily in the second course in the sequence.

COURSE CONCEPTS

We designed a sequence of three courses that provides the
student with broad exposure to the real-time and embedded
systems domain. The first course, Real-Time and Embedded
Systems, provides a general introduction to the area. We
expect that this course will have the largest appeal across both
disciplines with some aspects particularly attractive to both the
computer engineering and software engineering students. The
second course, Modeling of Real-Time Systems, has a
stronger software engineering flavor. It covers UML
modeling of real-time and embedded systems. The third
course is titled Performance Engineering of Real-Time and
Embedded Systems deals with measurement of system
performance, implementation of time-critical software and the
fluid hardware/software boundary. The next sections describe
these three courses in detail.

REAL-TIME AND EMBEDDED SYSTEMS COURSE

 The first course in this elective sequence is titled Real-Time
and Embedded Systems. It presents a general road map of
real-time and embedded systems. It introduces a representative
family of microcontrollers that exemplify unique positive
features as well as limitations of microcontrollers in embedded
and real-time systems. These microcontrollers are used as
external, independent performance monitors of more complex
real-time systems targeted on more robust platforms. The
majority of this course presents material on a commercial real-
time operating system and using it for programming projects
on development systems and embedded target systems. Some
fundamental material on real-time operating systems is also be
presented. Example topics include scheduling algorithms,
priority inversion, and configuration of a real-time operating

Session T1A

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T1A-3

system for a target platform and host development system.
This first course was first offered at RIT in the spring of 2003.
It has since been offered three more times. The textbook for
the course is Real-Time Systems and Software by Shaw[2].
Using Bloom’s Taxonomy as a guide, the learning outcomes
for this course are given in Table I.

TABLE I

LEARNING OUTCOMES FOR REAL-TIME AND EMBEDDED SYSTEMS COURSE
Knowledge
 • List the scheduling algorithms commonly used in real-time

systems.
• Describe the steps required to build, install and run a software

system on an embedded processor.
Comprehension
 • Discuss the event sequence for responding to an interrupt.

Application
 • Apply software engineering practices to the development of

several small real-time systems.
• Demonstrate the use of a micro-controller as an event timer.
• Design and implement measurement tools to collect system

performance data.
• Design and implement a concurrent system on a real-time

operating system.
Analysis
 • Measure the performance of a real-time operating system.
Synthesis
 • Design and implement a small-scale real-time application on a

real-time operating system.

The topics covered by the class provide an introduction to

the area. Class discussion focuses primarily on the
fundamentals of real-time systems. The project work spans the
range from microcontroller assembly programming through to
application development under a commercial real-time
operating system. The topics covered by the Embedded and
Real-Time Systems course include:
• Introduction to Real-Time and Embedded Systems
• Microcontrollers
• Software Architectures for Real-Time Operating Systems
• Requirements and Design Specifications
• Decision Tables and Finite State Machines
• Scheduling in Real-Time Systems
• Programming for a commercial real-time operating

system
• Development for Embedded Target Systems
• Design Patterns for Real-Time Systems
• Language Support for Real-Time
• Real-Time and Embedded Systems Taxonomy
• Safety Critical Systems

There are several programming project assignments given
to the students. A pair of students works on each assignment.
As was mentioned previously, to the extent that the
registration numbers permit a software engineering and
computer engineering student are paired together. This course
has a mix of projects that allows the computer engineering
student to provide the lead on some and the software
engineering student to lead the others. The project
assignments for this course are:

Microcontroller programming: students program the 68HC12

microcontroller to act as an interval timer. This assembly
language program measures the inter-arrival time of a
series of 1000 pulses using the hardware timers available
on the processor. Using these timers the students see how
to measure with microsecond resolution.

Real-Time Operating System multi-tasking primitives: the
main goal for this project is to have the students become
familiar with programming under a commercial real-time
operating system. Using VxWorks as an example of a
commercial real-time operating system, students learn how
to program using its concurrency and synchronization
primitives. The team must implement a concurrent system
such as a transit simulation or an automated factory. The
programming is done within a simulated target system
running on the development station.

Real-Time Operating System performance measurements:
there are two smaller projects that fall into this category.
These programs run in the target systems. Both projects
make use of the microcontroller project as a timing device.
In the first project the students learn how to schedule a
periodic task under VxWorks. This task is toggling a bit on
the printer port. The microcontroller timer measures the
inter-arrival time and jitter of these periodic pulses. The
second project measures the interrupt response time of the
system by having the microcontroller measure the time
between generating an interrupt signal to the target and
receiving a response from the target. These two projects
are run on the target systems.

Final project: there is a final programming project. This
project is usually of student motivated with each team
thinking of a project. We have seen implementations of
user-level drivers for the devices on the target system, an
ultrasound distance measurement, simple video games, and
a digital oscilloscope.

Table II shows the contribution to the final course grade

for each course component.

TABLE II
GRADE PERCENTAGES FOR REAL-TIME AND EMBEDDED SYSTEMS COURSE

Percentage Course Component
15
15
20
15
15
20

Microcontroller programming project
VxWorks simulation project
VxWorks performance measurement projects
Final project
Mid-term exam
Final exam

The first four elements are team projects where each of

the two students receives the same grade. In cases of an odd
number of students we usually create one team of three
students. The two exams are individual assessments. This
yields a 35%/65% split between individual and team
assessment in the final grade. Teams are changed after each
project. Teams are formed using self-selection with the
constraints that a computer engineer should be paired with a
software engineer and previous pairings can not be repeated.

Session T1A

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T1A-4

MODELING OF REAL-TIME SYSTEMS COURSE

The second course is titled Modeling of Real-Time Systems.
The course takes an engineering approach to the design of
these systems by analyzing a model of the system before
beginning implementation. The course discusses primarily
UML based methodologies. Implementation of real-time
systems will be developed manually from the models and
using automated tools to generate the code. At this point, this
course has run twice. Doing Hard Time by Douglass [3] is the
textbook for the course. Using Bloom’s Taxonomy the
learning outcomes for this course are given in Table III.

TABLE III

LEARNING OUTCOMES FOR MODELING REAL-TIME SYSTEMS COURSE
Knowledge
 • Specify the characteristics of real-time and safety critical

systems.
Comprehension
 • Discuss the software process for the development of real-time

systems and contrast it with development for a standard
application.

• Identify architectural and design patterns for real-time and
safety critical systems.

Application
 • Apply architectural and design patterns in the analysis and

design of real-time systems.
Analysis
 • Model the dynamic behavior of a real-time system using

statecharts.
• Describe the requirements for simple real-time systems using

use cases.
• Model the structure of a real-time system using UML class

diagrams.
Synthesis
 • Implement a simple system on a real-time operating system.

Topics covered by the Modeling of Real-Time Systems

course include:
• Introduction to Modeling of Real-Time Systems
• Basic Concepts of Real-Time Systems
• Basic Concepts of Safety-Critical Systems
• Use case analysis for real-time systems
• Structural object analysis for real-time systems
• Behavioral Analysis using statecharts
• Design patterns for real-time and safety-critical systems
• Threading and Schedulability
• Real-Time Frameworks

This course has the strongest software engineering emphasis.
The projects progress through phases in the standard waterfall
process model with emphasis on analysis and design of the
software system. For the software engineering students this is
continued practice in the UML modeling that they do in all the
courses in their program. The application areas chosen for the
projects, i.e. embedded systems, are significantly different
from the typical desktop and GUI-over-database projects that
they see in their other courses. In this course the software
engineering students take the lead on most projects. Many
computer engineering students have not done any UML

modeling since their second-year software engineering course.
The project assignments for this course are:

Requirements and Architectural Design: this assignment starts

with the user manual for a consumer electronic device. It
requires the students to identify the actors in the system
and do a use case analysis. This is then followed by an
architectural design and high-level class structural design.
A home blood pressure monitor and a digital video
recorder are two devices that we have used for this project.

Design and Implementation: this assignment starts with a clear
statement of requirements and requires the team to do a
class-level design and implementation. We have used both
end-user applications, four-function calculator, and a
simulation, controller for a chilled water air conditioning
system. The implementation language is Java with the
team implementing a graphical user interface to control the
program.

Code Generation: through this course we place an emphasis on
statecharts as a mechanism for behavior modeling of real-
time and embedded systems. In this project the students
explore the code generation features of the modeling tool
they use. The teams create a statechart-based definition of
the behavior and automatically generate C++ code for the
application. Typically, the team will be able to create a
fully-functioning application entirely from within the
statechart model. This is not to say that the team writes no
C++ code. Some adornments to states are code snippets
that get built into the code that the tool auto-generates. For
this project we have used a four-function calculator and
garage door opener controller.

Final Project: this project is a modeling exercise done as a
take-home final exam. Each student does a thorough
identification of actors, a use case analysis, class structural
design and system dynamic modeling using sequence
diagrams and statecharts. There is no implementation of
the systems which to date have been a power window
controller for a car and a reverse vending machine that
accepts containers for recycling at the local supermarket.

Table IV shows the contribution to the final course grade

for each course component.

TABLE IV
GRADE PERCENTAGES FOR MODELING OF REAL-TIME SYSTEMS COURSE

Percentage Course Component
20
20
15
20
15
10

Requirements project
Design and implementation project
Code generation project
Final project
Mid-term exam
Class exercises and on-line discussion participation

The first three components are work done in teams of two

students with each student receiving the same grade and the
last three elements are an individual assessment. This yields a
45%/55% split between individual and team assessment in the
final grade. We use participation in class exercises and on-line
discussions as an assessment technique. There is a discussion

Session T1A

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T1A-5

topic for each chapter in which students post prior to class one
thing that is confusing about their chapter reading and
something that he or she thought was interesting or a new
perspective for them. We use the items identified by the
students as the basis for classroom discussion in the next
session.

PERFORMANCE ENGINEERING OF REAL-TIME AND
EMBEDDED SYSTEMS COURSE

The third course is Performance Engineering of Real-Time
and Embedded Systems. This course is first being offered
during the spring quarter of 2005. As of this writing, aspects
of the course are still under development. The course is
roughly divided in half with the first and second parts
emphasizing performance of real-time systems and embedded
systems, respectively. This course has an unusual combination
of topics and we have not identified a single textbook that is
suitable. We are covering the course topics with handouts and
other on-line resources for the students. Using Bloom’s
Taxonomy the learning outcomes for this course are given in
Table V.

TABLE V
LEARNING OUTCOMES FOR PERFORMANCE ENGINEERING OF REAL-TIME AND

EMBEDDED SYSTEMS COURSE
Knowledge
 • Identify PID control modes
Comprehension
 • Distinguish differences between PID control modes

• Contrast effects of system parameters on control of a physical
system.

Application
 • Profile the execution of an embedded system
Analysis
 • Describe hardware/software tradeoffs in the design of an

embedded system.
• Analyze the profiling data to determine which areas of the

program would benefit most from performance tuning.
• Compare performance of systems based on performance data.

Synthesis
 • Design a test and measurement plan to collect system

performance data.
• Demonstrate the effects of moving the hardware/software

boundary in a design

Topics covered by the Performance Engineering of Real-
Time and Embedded Systems course include:
• Performance measurements for real-time and embedded

systems
• Profiling of program execution in embedded systems
• Exploration of linear control systems
• Interpretation of linear control parameters
• Hardware system description languages
• Hardware/software co-design

The real-time part of the course presents the control of
physical systems on an intuitive level. The intent is to give
exposure to control system structure and performance rather
than have student design control systems. The software
engineers have no background in controls. The computer

engineering students are able to contribute to the analytical
and control algorithms from their required control systems
courses and will take the lead on these projects. Students
perform experiments with the inverted pendulum system and a
ball and balance beam. These experiments highlight the effect
of parameter tuning and system load on control of the physical
apparatus. In future offerings, this set of experiments will
culminate with student implementations of software
controllers.

The embedded systems part of the course uses our target
system as the computing element running the VxWorks
commercial real-time operating system. We deliberately chose
a rather slow (100MHz clock) 486 processor for our target
systems so that we could more easily monitor loading effects.
This is close to power management policies in low-power
embedded devices that prolong battery life by slowing the
clock speed. In subsequent course offerings, input and output
devices will be connected through an FPGA I/O controller.
Students will measure initial system performance when the
I/O controller is a pass-through interface between the
processor and the devices. The current offering has the
students performing a set of JPEG image compressions, first
using an all-software approach on the target system, and then
off-loading some of the computations to an attached FPGA
board. The students will then be able to make a hardware-
software co-design tradeoff by placing more device control
functionality in the FPGA. At each step the students will
measure the change in system performance as the boundary
between hardware and software is moved.

EVALUATION PLAN

This project has two components in its evaluation plan.

External evaluation: a faculty member from one of our
collaborating institutions evaluated our work at the end of
the first year in May 2004. At this same time we had an
external review by someone working in local industry
developing real-time and embedded systems. Near the end
of the NSF funding period in June 2005 we will again
arrange a review by faculty from our collaborating
institutions and local industrial representatives.

 Course evaluations and surveys: students enrolled in the
courses will be given concept surveys at the beginning and
end of each course to assess their domain learning through
each course. Course evaluations will ask students to assess
the course materials, the laboratory environment, the
teaching effectiveness and whether the course has
increased their interest in real-time and embedded systems
or helped them get a co-op or full-time position.

PROJECT EVALUATIONS

At the project halfway point we gathered initial evaluations of
our work. We had our academic collaborators review syllabi
and course materials for the two courses that had been offered
during the first year. We also obtained an evaluation from two
industrial reviewers. The reviews were generally positive. A
summary comment made by one set of reviewers was:

Session T1A

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T1A-6

“Overall, the collection of courses is excellent. The topics
covered appear to address those things that companies
engaged in the design of real-time, embedded systems are
directly concerned with. Graduates possessing such
knowledge should be very employable.”

We also surveyed 45 students who took courses in the

sequence. This group was composed 40% each of computer
engineering and software engineering students and 10% each
of electrical engineering and computer science students.
These initial results are very encouraging. In response to the
question “Which, if any, of these courses assisted you in
obtaining a co-op or full-time position?”, 8 and 3 students
believe the first and second course, respectively, helped them
in this regard. This represents 24% of the responses. The
students stated that their experience with a commercial
operating system and the range of projects they did impressed
their potential employers. A stated project goal was to have
one third of the students who take all three courses get work in
real-time and embedded systems. The 24% response is on
track to reach that goal. Table VI gives the percentage of
responses to the following survey questions.
• These courses increased my interest in real-time and

embedded systems.
• I plan to seek employment in the real-time and embedded

systems area.
• The multi-disciplinary partnering of students was

beneficial for my learning.

TABLE VI
RESPONSE TO SURVEY QUESTIONS IN PERCENTAGE

Question Strongly
Disagree

Disagree Undecided Agree Strongly
Agree

Increased interest 0 2 13 60 24
Will seek
employment

9 13 27 31 20

Multi-disciplinary
beneficial

4 4 16 38 38

From this data we see that our work so far is achieving the

goals of this project, namely, to use multi-disciplinary teaming
to increase the students’s learning and interest in real-time and
embedded systems.

FUTURE WORK

We are pleased with the evaluations of our project. This
section describes some areas for improvement that have been
identified and other activities for the future.
• One challenge has been to develop courses interesting to

the software engineers and computer engineers. The
Modeling course is very well liked by the software
engineering students but is not as attractive to the
computer engineers. We need to balance that course more.
Even the SE students suggest that we select projects with
more explicit time-dependent requirements. We will also
consider designing a project that requires implementation
on the Java Micro Edition platform.

• The main exposure to VxWorks is in our first course. We
do not have a strict prerequisite structure within these
three courses thus we are hesitant to put projects requiring
implementation on VxWorks in the other two courses.
We need to create a very succinct tutorial on writing
applications for VxWorks that we can use in the two
courses that currently do not cover the RTOS in detail.

• It took us quite a while to settle on a configuration for
VxWorks in the lab that could easily support 13
simultaneous target systems and give easy distribution of
new VxWorks images. We next need to work on giving
students the necessary control to create their own images
when their project is developing a kernel-level driver.

• The lack of a suitable textbook for the performance
engineering course is an issue for that course. We will
assess the best approach to follow after the course has run
for its first time in our spring 2005 term.

• There are other devices that we would like to have
students use with their project work. At the top of the list
would be interfacing to cheap USB webcams.
Unfortunately, we have not yet identified any cameras
that publish their USB interface.

• A last element of dissemination of our work, which will
take place at the end of the project, is to collect all of our
course materials, projects, exams, etc. on to a password
protected website and publicize its availability to the
engineering education community.

ACKNOWLEDGMENT

This project is being conducted under the sponsorship of a
National Science Foundation grant under the Course,
Curriculum and Laboratory Improvement Program (NSF
DUE-0311269) and in collaboration with Professor Yann-
Hang Lee of Arizona State University and Professor Ronald
Schroeder of Southern Polytechnic State University. We
would also like to thank Mr. Todd Mosher of Alstom
Transport Systems for his review of our project’s first year.

REFERENCES

[1] Diamond Systems, http://www.diamondsystems.com.

[2] Diligent, http://www.digilentinc.com.

[3] Douglass, B. P., Doing Hard Time – Developing Real-Time Systems with
UML, Objects, Frameworks, and Patterns, Addison Wesley, Reading,
1999.

[4] IBM Rational Software, http://www.rational.com.

[5] I-Logix, http://www.ilogix.com.

[6] The MathWorks, http://www.mathworks.com.

[7] MGTEK, http://www.mgtwk.com/miniide.

[8] Quanser Systems, http://www.quanser.com.

[9] Shaw, A. C., Real-Time Systems and Software, John Wiley & Sons, Inc.,
New York, 2001.

[10] Starnes, T, "Microcomputers Infest the Home", Gartner Research, Inc.
2002.

[11] Wind River Systems, http://www.windriver.com.

