
40104010--350350 Personal SEPersonal SE

Introduction to CIntroduction to C

A Bit of HistoryA Bit of History

�� Developed in the early to mid 70sDeveloped in the early to mid 70s

–– Dennis Ritchie as a systems programming language.Dennis Ritchie as a systems programming language.

–– Adopted by Ken Thompson to write Unix on a the PDPAdopted by Ken Thompson to write Unix on a the PDP--11.11.

�� At the time:At the time:

–– Many programs written in assembly language.Many programs written in assembly language.

–– Most systems programs (compilers, etc.) in assembly language.Most systems programs (compilers, etc.) in assembly language.

–– Essentially ALL operating systems in assembly language.Essentially ALL operating systems in assembly language.

�� Proof of ConceptProof of Concept

–– Even small computers could have an OS in a HLL.Even small computers could have an OS in a HLL.

–– Small: 64K bytes, 1Small: 64K bytes, 1µµs clock, 2 s clock, 2 MByteMByte disk.disk.

–– We ran We ran 5 simultaneous users5 simultaneous users on this base!on this base!

But Efficiency Wasn't Cheap in the 70sBut Efficiency Wasn't Cheap in the 70s

�� Compiler development still art as much as science.Compiler development still art as much as science.

�� Code optimization in its infancy.Code optimization in its infancy.

�� C as a C as a consquenceconsquence::

–– Has types (but they can be easily ignored).Has types (but they can be easily ignored).

–– Has no notion of objects (just arrays and Has no notion of objects (just arrays and structsstructs).).

–– Permits pointers to arbitrary locations in memory (Scout's HonorPermits pointers to arbitrary locations in memory (Scout's Honor

Programming).Programming).

–– Has no garbage collection Has no garbage collection –– it's the programmer's job to manage it's the programmer's job to manage

memory.memory.

�� That is, C is the band saw of programming languages:That is, C is the band saw of programming languages:

–– Very powerful and doesn't get in your way.Very powerful and doesn't get in your way.

–– Very dangerous and you can cut off your fingers.Very dangerous and you can cut off your fingers.

What Java Borrowed From CWhat Java Borrowed From C

�� { and } for grouping.{ and } for grouping.

�� Prefix type declaration (e.g., Prefix type declaration (e.g., intint i vs. i : i vs. i : intint).).

�� Control structures (mostly)Control structures (mostly)

–– if, switchif, switch

–– while, forwhile, for

�� Arithmetic (numeric) operations:Arithmetic (numeric) operations:

–– ++ and ++ and ---- (prefix and suffix)(prefix and suffix)

–– opop= (e.g. += *=, etc.)= (e.g. += *=, etc.)

–– + + -- * / %* / %

�� Relational & Relational & booleanboolean operators:operators:

–– < > <= >= != ==< > <= >= != ==

–– ! || &&! || &&

Things Uniquely CThings Uniquely C

�� TodayToday

–– No classes No classes –– just functions & data.just functions & data.

–– Characters are just small integers.Characters are just small integers.

–– No No booleansbooleans..

–– Limited visibility control via #include and separate compilationLimited visibility control via #include and separate compilation..

–– Simple manifest constants via #defineSimple manifest constants via #define

�� LaterLater

–– Array size fixed at compile time.Array size fixed at compile time.

–– Strings are just constant arrays.Strings are just constant arrays.

–– Simple data aggregation via structures (Simple data aggregation via structures (structstruct))

–– And, last but not least And, last but not least –– POINTERS!!!POINTERS!!!

Functions & DataFunctions & Data

�� C functions C functions –– like methods free from their class.like methods free from their class.

�� The most important function: mainThe most important function: main

�� Example: Hello, worldExample: Hello, world

#include <stdlib.h>

#include <stdio.h>

int main() {

puts("Hello, world!") ;

return 0 ;

}

Functions & DataFunctions & Data

�� C functions C functions –– like methods free from their class.like methods free from their class.

�� The most important function: mainThe most important function: main

�� Example: Hello, worldExample: Hello, world

#include <stdlib.h>

#include <stdio.h>

int main() {

puts("Hello, world!") ;

return 0 ;

}

Includes interface
information to other
modules

Similar to import in Java

But done textually!!

Functions & DataFunctions & Data

�� C functions C functions –– like methods free from their class.like methods free from their class.

�� The most important function: mainThe most important function: main

�� Example: Hello, worldExample: Hello, world

#include <stdlib.h>

#include <stdio.h>

int main() {

puts("Hello, world!") ;

return 0 ;

}

stdlib
atoi, atol, atof
memory allocation
abort, exit, system, atexit
qsort, bsearch [advanced]

Functions & DataFunctions & Data

�� C functions C functions –– like methods free from their class.like methods free from their class.

�� The most important function: mainThe most important function: main

�� Example: Hello, worldExample: Hello, world

#include <stdlib.h>

#include <stdio.h>

int main() {

puts("Hello, world!") ;

return 0 ;

}

stdio
getchar, fgetc, putchar, fputc
printf, fprintf, sprintf
gets, puts, fgets, fputs
scanf, fscanf, sscanf

Functions & DataFunctions & Data

�� C functions C functions –– like methods free from their class.like methods free from their class.

�� The most important function: mainThe most important function: main

�� Example: Hello, worldExample: Hello, world

#include <stdlib.h>

#include <stdio.h>

int main() {

puts("Hello, world!") ;

return 0 ;

}

Every C program has a main
function – the first function called.

main returns exit status.
0 = ok
anything else = abnormal.

Functions & DataFunctions & Data

�� C functions C functions –– like methods free from their class.like methods free from their class.

�� The most important function: mainThe most important function: main

�� Example: Hello, worldExample: Hello, world

#include <stdlib.h>

#include <stdio.h>

int main() {

puts("Hello, world!") ;

return 0 ;

}

puts, from stdio, prints a string
and appends a newline ('\n').

Strings are simpler in C than Java.

C strings are just constant arrays.

Characters are Small IntegersCharacters are Small Integers

�� Consider the following C constants"Consider the following C constants"

'a' 97 0141 0x61'a' 97 0141 0x61

�� In C they are all the In C they are all the same valuesame value –– a small positive a small positive intint..

�� That is, characterThat is, character constants are just small integers.constants are just small integers.

–– Use the notation that expresses what you are doing:Use the notation that expresses what you are doing:

–– If working with numbers, use 97 (or 0141 / 0x61 if bit twiddlingIf working with numbers, use 97 (or 0141 / 0x61 if bit twiddling).).

–– If working with letters, use 'a'.If working with letters, use 'a'.

–– Question: what is 'a' + 3?Question: what is 'a' + 3?

–– Question: if Question: if chch holds a lower case letter, what is holds a lower case letter, what is chch -- 'a'?'a'?

�� Escape sequences with backslash:Escape sequences with backslash:

–– ''\\n'n' == newline, == newline, ''\\t't' == tab, == tab, ''\\r'r' == carriage return== carriage return

–– ''\\dddddd'' == character with octal code == character with octal code dddddd (the (the dd''ss are digits 0are digits 0--7).7).

–– ''\\0'0' == NUL character (end of string in C).== NUL character (end of string in C).

Integer Types in CInteger Types in C

�� charchar

�� unsigned charunsigned char

�� shortshort

�� unsigned shortunsigned short

�� intint

�� unsigned unsigned intint = unsigned= unsigned

�� longlong

�� unsigned longunsigned long

�� long long longlong

�� unsigned long unsigned long longlong

one byte = 8 bits one byte = 8 bits -- possibly signedpossibly signed

one byte unsignedone byte unsigned

two bytes = 16 bits signedtwo bytes = 16 bits signed

two bytes unsignedtwo bytes unsigned

"natural" sized integer, signed"natural" sized integer, signed

"natural" sized integer, unsigned"natural" sized integer, unsigned

four bytes = 32 bits, signedfour bytes = 32 bits, signed

four bytes, unsignedfour bytes, unsigned

eight bytes = 64 bits, signedeight bytes = 64 bits, signed

eight bytes, unsignedeight bytes, unsigned

Another Example Another Example –– Count PunctuationCount Punctuation

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

int main() {

int tot_punct = 0 ; // declare & init. a local variable

int nchar ; // next character read

while((nchar = getchar()) != EOF) {

if(ispunct(nchar)) {

++tot_punct ;

}

}

printf("%d punctuation characters\n", tot_punct) ;

return 0 ;

}

Another Example Another Example –– Count PunctuationCount Punctuation

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

int main() {

int tot_punct = 0 ; // declare & init. a local variable

int nchar ; // next character read

while((nchar = getchar()) != EOF) {

if(ispunct(nchar)) {

++tot_punct ;

}

}

printf("%d punctuation characters\n", tot_punct) ;

return 0 ;

}

ctype
isalnum, isalpha, isdigit, iscntrl
islower, isupper, ispunct, isspace
isxdigit, isprint
toupper, tolower

Another Example Another Example –– Count PunctuationCount Punctuation

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

int main() {

int tot_punct = 0 ; // declare & init. a local variable

int nchar ; // next character read

while((nchar = getchar()) != EOF) {

if(ispunct(nchar)) {

++tot_punct ;

}

}

printf("%d punctuation characters\n", tot_punct) ;

return 0 ;

}

Next character from standard in.
Why int and not char?
Because EOF is negative!

Another Example Another Example –– Count PunctuationCount Punctuation

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

int main() {

int tot_punct = 0 ; // declare & init. a local variable

int nchar ; // next character read

while((nchar = getchar()) != EOF) {

if(ispunct(nchar)) {

++tot_punct ;

}

}

printf("%d punctuation characters\n", tot_punct) ;

return 0 ;

}

Common C idiom:
Get & assign value
Compare to control flow

= vs. == can kill you here.

Another Example Another Example –– Count PunctuationCount Punctuation

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

int main() {

int tot_punct = 0 ; // declare & init. a local variable

int nchar ; // next character read

while((nchar = getchar()) != EOF) {

if(ispunct(nchar)) {

++tot_punct ;

}

}

printf("%d punctuation characters\n", tot_punct) ;

return 0 ;

}

EOF defined in stdio.h as (-1)
Not a legal character.
Signals end-of-file on read.

Another Example Another Example –– Count PunctuationCount Punctuation

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

int main() {

int tot_punct = 0 ; // declare & init. a local variable

int nchar ; // next character read

while((nchar = getchar()) != EOF) {

if(ispunct(nchar)) {

++tot_punct ;

}

}

printf("%d punctuation characters\n", tot_punct) ;

return 0 ;

}

Helper function from ctype
True iff nchar is punctuation.

Another Example Another Example –– Count PunctuationCount Punctuation

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

int main() {

int tot_punct = 0 ; // declare & init. a local variable

int nchar ; // next character read

while((nchar = getchar()) != EOF) {

if(ispunct(nchar)) {

++tot_punct ;

}

}

printf("%d punctuation characters\n", tot_punct) ;

return 0 ;

}

Formatted output to standard out.
printf = print formatted

1st argument is format string
Remaining arguments are printed

according to the format.

Short Digression on Short Digression on PrintfPrintf

�� Format string printed as is except when encounters '%'Format string printed as is except when encounters '%'

–– %d%d print integer as decimalprint integer as decimal

–– %f%f print floating point (fixed point notation)print floating point (fixed point notation)

–– %e%e print floating point (exponential notation)print floating point (exponential notation)

–– %s%s print a stringprint a string

–– %c%c print integer as a characterprint integer as a character

–– %o / %x%o / %x print integer as octal / hexadecimalprint integer as octal / hexadecimal

�� Format modifiers Format modifiers -- examplesexamples

–– %%nn..mmff at least at least nn character field with character field with mm fractional digitsfractional digits

–– %%nndd at least at least nn character field for a decimal value.character field for a decimal value.

�� Example:Example:
printf("%dprintf("%d loans at %5.2f%% interestloans at %5.2f%% interest\\n",nloansn",nloans, pct) ;, pct) ;

�� See the See the stdio.hstdio.h documentation for more on format control.documentation for more on format control.

Boolean = IntegerBoolean = Integer

�� There is no There is no booleanboolean type in C.type in C.

�� 0 is 0 is falsefalse, , everythingeverything else is else is truetrue..

–– False:False: 00 0.00.0 ''\\0'0' NULL (0 pointer).NULL (0 pointer).

–– True:True: 11 'a''a' 3.141593.14159

�� The result of a comparison operator is 0 or 1.The result of a comparison operator is 0 or 1.

�� Many programmers define symbolic constants:Many programmers define symbolic constants:

#define TRUE (1)#define TRUE (1)

#define FALSE (0)#define FALSE (0)

�� Pet Peeve:Pet Peeve:

BADBAD

if (value < limit) {if (value < limit) {

return TRUE ;return TRUE ;

} else {} else {

return FALSE ;return FALSE ;

}}

GOODGOOD

return value < limit ;return value < limit ;

CompilationCompilation

�� Our systems use the GNU C compiler (Our systems use the GNU C compiler (gccgcc))

�� The compilation process with two files (The compilation process with two files (main.cmain.c, , foo.cfoo.c))
gccgcc ––o o myprogmyprog main.cmain.c foo.cfoo.c

Lexer

Object
File Writer

Code
Optimizer

Code
Generator

Parser

main.c

foo.c

Linux
Linker

main.o

foo.o

myprog

CompilationCompilation

�� Problems can occur all along the line:Problems can occur all along the line:

–– UnterminatedUnterminated comments can throw off the comments can throw off the lexerlexer..

–– Syntax errors are detected by the parser.Syntax errors are detected by the parser.

–– The code generator / optimizer can generate bad code (highly The code generator / optimizer can generate bad code (highly

unlikely).unlikely).

–– The linker may not be able to resolve all the external referenceThe linker may not be able to resolve all the external references.s.

�� Notes on linking:Notes on linking:

–– Every object file has a table of contents.Every object file has a table of contents.

–– Some of the names are defined in the file (e.g., main).Some of the names are defined in the file (e.g., main).

–– Some are needed from another file (e.g., Some are needed from another file (e.g., printfprintf).).

–– The linker tries to resolve these BUT:The linker tries to resolve these BUT:

�� It may not be able to find a symbol it needs (missing file?)It may not be able to find a symbol it needs (missing file?)

�� It may find two definitions of a symbol (name conflict).It may find two definitions of a symbol (name conflict).

