4010-350 Personal SE

Functions, Arrays, Strings and
Files

Functions in C

Syntax like Java methods but w/o public, abstract, etc.

As in Java, all arguments (well, most arguments) are
passed by value.

Example:

void try_swap(int x, int y) {
int t = x ;
X =Y,
y =1t ;

¥

Doesn't work:

— x and y are copies of the arguments in the caller.
— Changing the copy has no effectin the caller.

Functions in C

m Functions must be declared before use:

— Dec/are means specify name, return value, and argument types.
m Indeed, in C everything must be declared before use!

Functions in C

m Functions must be declared before use:

— Dec/are means specify name, return value, and argument types.
m Indeed, in C everything must be declared before use!

extern int min(int x, int y) ; // Declaration of min
static int max(int x, int y) ; // Declaration of max

int max_div_min(int x, int y) {
return max(x, y) / min(x, y) ;

}

int min(int x, int y) { // Definition of min
return (X <=y) ?2 X : Yy ;

}

static int max(int x, int y) { // Definition of max
return (x >=y) ? X 1y ;

}

- - extern: defined elsewhere
Functions in C [Raeeitiy s ey

m Functions must be declar efore use:

— Dec/are means specify name, return value, and argument types.
m Indeed, in C everything must be declared before use!

extern [int min(int x, int y) ; // Declaration of min
static int max(int x, int y) ; // Declaration of max

int max_div_min(int x, int y) {
return max(x, y) / min(x, y) ;

}

int min(int x, int y) { // Definition of min
return (X <=y) ?2 X : Yy ;

}

static int max(int x, int y) { // Definition of max
return (x >=y) ? X 1y ;

}

Fu nCtIOI"IS In C static: defined and known

only in this C source file.

extern Ant min(int x, int y) ;

static|int max(int x, int y) ;

int max_div_min(int X,
return max(x, y) /

}

int min(int x,Int y) { // Definition of min
X <=Yy) ? X 1Y ;

static|int max(int x, int y) { // Definition of max

return (Xx >=y) ?2 X : Yy ;

}

Arrays in C

m Generic form: type name[size] ;
m Examples:

#define MAX_SAMPLES (100)
int samples[MAX_SAMPLES] ;

Arrays in C

Array of 100 integers. \
Indices run 0 .. 99

m Generic form: type name[size] ; NO SUBSCRIPT CHECKS!

m Examples: NOTE THE USE OF SYMBOLIC
CONSTANT! Y

#define MAX_SAMPLES (100)
int samples[MAX_SAMPLES]

Arrays in C

m Generic form: type name[size] ;
m Examples:

Simple summation of array
values.

#define MAX_SAMPLES (100)
int samples[MAX_SAMPLES] ;

//;nt sum = 0 ; ﬁ\\

int 1 ;

for (i = 0 ; i < MAXSAMPLES ; ++i) {
sum += samples[i] ;

¥

_ %

Arrays in C

#define DIMENSION (50) ;
double m1[DIMENSION] [DIMENSION] ;

Arrays |n C A matrix or a 2 dimensional ar@

Access by mi[i 1[j]

[#define DIMENSION (50) ;

double m1[DIMENSION] [DIMENSION] ;

of double indices.

Arrays |n C Matrix multiplication to show ui

#define DIMENSION (50) ;

double m1[DIMENSION][DIMENSION] ;
double m2[DIMENSION] [DIMENSION] ;
double product[DIMENSION][DIMENSION] ;

{nti,j,k; \

for (i =0 ; 1 < DIMENSION ; ++1) {
for (J =0 ; j < DIMENSION ; ++j) {
product[i J[j 1 = 0.0 ;
for (k = 0 ; k < DIMENSION ; ++k) {
product[i][j] += ml[i][k] * m2[k][J] ;
}

N /

Arrays in C

m Arrays are passed to functions by reference.

Arrays in C

m Arrays are passed to functions by reference.

m Changes to the array contents in the function will be
visible to the caller, e.qg., array copy.

Arrays in C

Arrays are passed to functions by reference.

Changes to the array contents in the function will be
visible to the caller, e.qg., array copy.

void acopy(int to[], 1nt from[], size) {
int 1 ;

forC 1 =0 ; 1 < size ; 1++) {
to[1] = from[1] ;
}

Arrays in C

Arrays are passed to functions by reference.

Changes to the array contents in the function will be
visible to the caller, e.qg., array copy.

void acopy([int to[], int from[], size]) {

Need not, but may,
give the array size.

Arrays in C - Review

Array size fixed at definition time.

Good practice (that is, OUR practice) is to use symbolic
constants to define array sizes.

Array indices are integers.
Legal indices run from O to arraysize - 1

C will not prevent you from indexing outside the bounds
of the array (no subscript checks).

Arrays are passed by reference.

Strings in C

m A string is just an array of chars:
char welcome[] = "Hello" ; // C permits this
m This is an array of 8-bit bytes holding ASCII characters.

Strings in C

A string is just an array of chars:
char welcome[] = "Hello" ; // C permits this

This is an array of 8-bit bytes holding ASCII characters
The array in memory looks like this:

'H' 'e' 'l' 'l' 'O' '\O'

Whoa! What's that /ast character????

Strings in C

A string is just an array of chars:
char welcome[] = "Hello" ; // C permits this

This is an array of 8-bit bytes holding ASCII characters
The array in memory looks like this:

'H! 'e' !l' !l' 'O' '\O!
Whoa! What's that /ast character????

In C, proper strings must be terminated with a NUL (0)
character.

We always need an extra byte to hold the terminator!

Strings in C

m There are 10 (that's two) basic ways to represent strings
of characters:
— Use a designated terminator character, like C.
— Keep a separate integer with the string length.

Strings in C

m There are 10 (that's two) basic ways to represent strings
of characters:

— Use a designated terminator character, like C.
— Keep a separate integer with the string length.

m Second way requires at least two bytes to process
reasonable sized strings.
— Memory in 1970 cost approx. $85 / kilobyte.
— @Gasoline cost 36¢/gallon - those were the days!
— Thus every byte counts!

Strings in C

m There are 10 (that's two) basic ways to represent strings
of characters:

— Use a designated terminator character, like C.
— Keep a separate integer with the string length.

m Second way requires at least two bytes to process
reasonable sized strings.
— Memory in 1970 cost approx. $85 / kilobyte.
— @Gasoline cost 36¢/gallon - those were the days!
— Thus every byte counts!

m Besides, with C, strings are no different from other
arrays.

Strings in C

m There are 10 (that's two) basic ways to represent strings
of characters:

— Use a designated terminator character, like C.
— Keep a separate integer with the string length.

m Second way requires at least two bytes to process
reasonable sized strings.
— Memory in 1970 cost approx. $85 / kilobyte.
— @Gasoline cost 36¢/gallon - those were the days!
— Thus every byte counts!

m Besides, with C, strings are no different from other
arrays.

Strings in C

m Assume we are reading and processing lines of text, where at most
the first 80 characters of a line are useful

m How would we declare an array to hold the line as a string?

Strings in C

m Assume we are reading and processing lines of text, where at most
the first 80 characters of a line are useful

m How would we declare an array to hold the line as a string?

#define MAXLINE (80)
char 1line[MAXLINE + 1] ; // 1 extra character for the NUL

Strings in C

m Assume we are reading and processing lines of text, where at most
the first 80 characters of a line are useful

m How would we declare an array to hold the line as a string?

#define MAXLINE (80)
char 1line[MAXLINE + 1] ; // 1 extra character for the NUL

m How would we read in such a line?

Strings in C

m Assume we are reading and processing lines of text, where at most
the first 80 characters of a line are useful

m How would we declare an array to hold the line as a string?

#define MAXLINE (80)
char 1line[MAXLINE + 1] ; // 1 extra character for the NUL

m How would we read in such a line?
void readline(char Tine[], int maxsize) {
int 1 = 0 ;
int ch ;
for (ch = getchar() ; ch != '\n' & ch != EOF ; ch = getchar()) {

if (1 < maxsize) {
Tine[i++] = ch ;
}

}
Tine[i] = "\0' ;
return ;

Strings in C

m How can we copy one string to another?
® Modify acopy to strcpy:

void strcpy(char sto[], char sfrom[]) {
int 1 ;

for (1 =0 ; sto[1] = sfrom[i] ; ++1)

Strings in C

m How can we copy one string to another?
® Modify acopy to strcpy:

void strcpy(char sto[], char sfrom[]) {
int 1 ;

for (1 =0 ;/sto[i 1 = sfrom[i] ;|++i)

Copy the ith character.
If this was a NUL, exit the loop.

String Library

#include <string.h>
int strlen(char str[]) ;
Note: strlen("Hello") ==

void strcpy(char sto[], char sfrom[]) ;

void strncpy(char sto[], char sfrom[], unsigned n);
Note: Copies 'n' characters to 'sto' from 'sfrom', padding
with '\0' as necessary.
Note: If 'sfrom'is too long to fit in 'sto’, then 'sto' will NOT
be NUL terminated.

int strcmp(char strl[], char str2[]) ;
Note: comparison is in dictionary order.
Note: returns-1,0, 1if 'strl’is less than, equal to, or greater than
'str2', respectively.

Basic File Operations in C

#include <stdio.h>
fopen - open named file & return a "handle":
FILE * fopen(char name[], char mode[]) ;

Basic File Operations in C

#include <stdio.h>
fopen - open named file & return a "handle":
[FILE *]fopen(char name[], char mode[]) ;

FILE * is a pointer to a structure.
You need not know the details to use it.

Just consider it an internal "handle" for the file.

Basic File Operations in C

#include <stdio.h>
fopen - open named file & return a "handle":
FILE * fopen([char name[]], char mode[]) :

The name (pathname) of the file as a string.

This can be a constant string or a properly terminated character
array.

Basic File Operations in C

#include <stdio.h>
fopen - open named file & return a "handle":
FILE * fopen(char name[], [char mode[]])

The way you want the file opened.

The two modes we may use are:

= "r" -open an existing file for reading.

= "w" -open an a file for writing - create if necessary.

Basic File Operations in C

#include <stdio.h>
fclose - close an open file:

fc1ose(FILE *handle) ;

Return value is 0 for success, EOF for any error.

We may simply ignore the return value.

Basic File Operations in C

#include <stdio.h>
fclose - close an open file:
int fc1ose([FILE *hand1e]) ;

Handle (from fopen) of the file you want to close.

Files automatically close when the program exits.

Character I/O on Files in C

#include <stdio.h>

fgetc - read a character (like getchar)
int fgetc(FILE *handle) ;

fputc - write a character (like putchar)
int fputc(int ch, FILE *handle) ;

fprintf - formatted output (like printf)
int fprintf(FILE *handle, char fmt[], ...

Command Line Arguments

The full declaration of main is:

int main(int ac, char **argv) ;

Command Line Arguments

The full declaration of main is:

int main([int acJ char **argv) ;

ac = argument count (the number of command line arguments).
ac >= 1, as the program name is the Oth argument.

Command Line Arguments

The full declaration of main is:

int main([int acJ char **argv) ;

ac = argument count (the number of command line arguments).
Includes the program name as the Oth argument.
Example: ac ==

[gcc] [—o] [myprog] [main.c] [utﬂ .c]

0 1 2 3 4

Command Line Arguments

The full declaration of main is:

int main(int ac, [char **argv]) ;

argv = the argument vector - allows access to the arguments
it's a pointer, but don't worry - treat it like a 2D array.
argvl[1] is it" argument as a string (array).
argvl 1][j 1 is the jt character of the i argument.

Example — Echo Arguments

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int ac, char **argv) {
int 1 ;

printf("Program name = %s\n", argv[0]) ;

for(i =1; 1 <ac ; ++i) {

printf("argv[%d] = %s ", i, argv[i]) ;
printf("and its length is %d\n", strlen(C argv[i])) ;

}

return 0 ;

Example — Copy Files

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

static void usage(char prognamel[])

static void copy(char source[], char dest[])

;
int main(int ac, char **argv) {
FILE *infile ;

FILE *outfile ;

if Cac !'= 3) {
usage(argv[0]) ;
exit(l) ;

}

copy(argv[1l], argv[2]) ;
return 0 ;

Example — Copy Files

static void usage(char progname[]) {
printf("Usage: %s in_file out_file\n", progname) ;

}

static void copy(char source[], char dest[]) {
FILE *inf = fopen(source, "r") ;
FILE *outf = fopen(dest, "w") ;

if (! inf || ' outf) { // O => bad handle => open error
exit(l) ;

}

int ch ;

for(ch = fgetc(inf) ; ch !'= EOF ; ch = fgetc(inf)) {
fputc(next_char, outf) ;

}

