
Personal SE

Strings & Command Line Arguments

Strings in C

• A string is just an array of chars:

char welcome[] = "Hello" ; // C permits this

• This is an array of 8-bit bytes holding ASCII
characters.

Strings in C

• A string is just an array of chars:

char welcome[] = "Hello" ; // C permits this

• This is an array of 8-bit bytes holding ASCII
characters

• The array in memory looks like this:

• Whoa! What’s that last character????

'H' 'e' 'l' 'l' 'o' '\0'

Strings in C

• A string is just an array of chars:

char welcome[] = "Hello" ; // C permits this

• This is an array of 8-bit bytes holding ASCII characters

• The array in memory looks like this:

• Whoa! What’s that last character????

• In C, proper strings must be terminated with a NUL (0)
character.

• We always need an extra byte to hold the terminator!

'H' 'e' 'l' 'l' 'o' '\0'

Strings in C

• Assume we are reading and processing lines of text, where at most the
first 80 characters of a line are useful

• How would we declare an array to hold the line as a string?

Strings in C

• Assume we are reading and processing lines of text, where at most the
first 80 characters of a line are useful

• How would we declare an array to hold the line as a string?

#define MAXLINE (80)

char line[MAXLINE + 1] ; // 1 extra character for the NUL

• Assume we are reading and processing lines of text, where at most the
first 80 characters of a line are useful

• How would we declare an array to hold the line as a string?

#define MAXLINE (80)

char line[MAXLINE + 1] ; // 1 extra character for the NUL

• How would we read in such a line?

Strings in C

Strings in C

• Assume we are reading and processing lines of text, where at most the first
80 characters of a line are useful

• How would we declare an array to hold the line as a string?

#define MAXLINE (80)

char line[MAXLINE + 1] ; // 1 extra character for the NUL

• How would we read in such a line?

void readline(char line[], int maxsize) {
int i = 0 ;
int ch ;

for (ch = getchar() ; ch != '\n' && ch != EOF ; ch = getchar()) {

if (i < maxsize) {
line[i++] = ch ;

}
}

line[i] = '\0' ;

return ;
}

• How can we copy one string to another?

• Modify acopy to strcpy:

void strcpy(char sto[], char sfrom[]) {

int i ;

for (i = 0 ; sto[i] = sfrom[i] ; ++i)

;

}

Strings in C

Strings in C

• How can we copy one string to another?

• Modify acopy to strcpy:

void strcpy(char sto[], char sfrom[]) {

int i ;

for (i = 0 ; sto[i] = sfrom[i] ; ++i)

;

}

Copy the ith character.
If this was a NUL, exit the loop.

String Library

#include <string.h>

int strlen(char str[]) ;

Note: strlen("Hello") == 5

void strcpy(char sto[], char sfrom[]) ;

void strncpy(char sto[], char sfrom[], unsigned n);

Note: Copies 'n' characters to 'sto' from 'sfrom', padding

with '\0' as necessary.

Note: If 'sfrom' is too long to fit in 'sto', then 'sto' will NOT

be NUL terminated.

int strcmp(char str1[], char str2[]) ;

Note: comparison is in dictionary order.

Note: returns -1, 0, 1 if 'str1' is less than, equal to, or greater than

'str2', respectively.

Command Line Arguments

The full declaration of main is:

int main(int ac, char **argv) ;

Command Line Arguments

The full declaration of main is:

int main(int ac, char **argv) ;

ac = argument count (the number of command line
arguments).

ac >= 1, as the program name is the 0th argument.

Command Line Arguments

The full declaration of main is:

int main(int ac, char **argv) ;

ac = argument count (the number of command line
arguments).

Includes the program name as the 0th argument.

Example: ac == 5

gcc -o myprog main.c util.c

0 1 2 3 4

Command Line Arguments

The full declaration of main is:

int main(int ac, char **argv) ;

argv = the argument vector - allows access to the
arguments

it's a pointer, but don't worry - treat it like a 2D
array.

argv[i] is ith argument as a string
(array).

argv[i][j] is the jth character of the ith

argument.

Example – Echo Arguments

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int main(int ac, char **argv) {

int i ;

printf("Program name = %s\n", argv[0]) ;

for(i = 1 ; i < ac ; ++i) {

printf("argv[%d] = %s ", i, argv[i]) ;

printf("and its length is %d\n", strlen(argv[i]
)) ;

}

return 0 ;

}

