SWEN-250 Personal SE

Introduction to C

@ A Bit of History

Software Engineering

Rochester Institute
of Technology

* Developed in the early to mid 70s
— Dennis Ritchie as a systems programming language.
— Adopted by Ken Thompson to write Unix on a the PDP-11.

e Atthetime:
— Many programs written in assembly language.

— Most systems programs (compilers, etc.) in assembly
language.

— Essentially ALL operating systems in assembly language.
* Proof of Concept

— Even small computers could have an OS in a HLL.
— Small: 64K bytes, 1us clock, 2 MByte disk.
— We ran 5 simultaneous users on this base!

‘@ But Efficiency Wasn't Cheap in the
70s

of Technology

 Compiler development still art as much as science.
* Code optimization in its infancy.

e Casa consquence:
— Has types (but they can be easily ignored).
— Has no notion of objects (just arrays and structs).

— Permits pointers to arbitrary locations in memory (Scout's
Honor Programming).

— Has no garbage collection —it's the programmer's job to
manage memory.

 Thatis, Cis the band saw of programming languages:
— Very powerful and doesn't get in your way.
— Very dangerous and you can cut off your fingers.

S
What Java Borrowed From C

Software Engineering
Rochester Institute
of Technology

e {and }for grouping.

Prefix type declaration (e.g., intivs.i:int).
Control structures (mostly)

— if, switch

— while, for

Arithmetic (numeric) operations:
— ++ and -- (prefix and suffix)

— 0op=(e.g. += *=, etc.)

- *) %

Relational & boolean operators:
— < > <=>= l= ==

— 1] &&

Things Uniquely C

Rochester Institute
of Technology

 Today
— No classes — just functions & data.
— Characters are just small integers.
— No booleans.
— Limited visibility control via #include and separate compilation.
— Simple manifest constants via #define

 Later
— Array size fixed at compile time.
— Strings are just constant arrays.
— Simple data aggregation via structures (struct)
— And, last but not least — POINTERS!!!

@ Functions & Data

Software Engineering

Rochester Institute
of Technology

e Cfunctions — like methods free from their class.
* The most important function: main
* Example: Hello, world

#include <stdlib.h>
#include <stdio.h>

int main() {
puts("Hello, world!") ;
return O ;

}

@ Functions & Data

Software Engineering

"+ C functions — like methods free from their class.
* The most important function: ma
* Example: Hello, world

#include <stdlib.h>
#include <stdio.h>

int main() {
puts("Hello, world!") ;
return O ;

}

@ Functions & Data

Software Engineering

"+ C functions — like methods free from their class.
* The most important function: main
* Example: Hello, world

@nclude <stdlib.h>

#include <stdio.h>

int main() {
puts("Hello, world!") ;
return O ;

}

Software Engineering
h r Institu

e Cfunctions — like methods free from their class.
* The most important function: main

Functions & Data

* Example: Hello, world

#inclu ib.h>
#include <stdio.h>

int main() {
puts("Hello, world!") ;

return O ;

}

@ Functions & Data

Software Engineering

"+ C functions — like methods free from their class.
* The most important function: main
* Example: Hello, world

#include <stdlib.h>
#include <stdio.h>

Cintmain(){

puts("Hello, world!") ;
return O ;

}

@ Functions & Data

Software Engineering
rin

"« Cfunctions — like methods free from their class.
* The most important function: main
* Example: Hello, world

#include <stdlib.h>
#include <stdio.h>

int main() {

@("Hello, world!")~

return 0,

}

©
Characters are Small Integers

Software Engineering

Rochester Institute
of Technology

* Consider the following C constants”
'a’ 97 0141 Ox61
* |n Cthey are all the same value — a small positive int.

 That s, character constants are just small integers.
— Use the notation that expresses what you are doing:
— If working with numbers, use 97 (or 0141 / 0x61 if bit twiddling).
— If working with letters, use 'a’.
— Question: whatis 'a' + 37
— Question: if ch holds a lower case letter, what is ch - 'a'?

e Escape sequences with backslash:
— "\n' ==newline, "\t ' ==tab, '\r' == carriage return
— "\ddd ' == character with octal code ddd (the d's are digits 0-7).
— "\O0"' == NUL character (end of string in C).

‘@ Another Example — Count

Punctuation

of Technology

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>

int main() {
int tot_punct = 0 ; // declare & init. a local variable
int nchar ; // next character read

while((nchar = getchar()) != EOF) {
1if(ispunct(nchar)) {
++tot_punct ;
}
¥

printf("%d punctuation characters\n", tot_punct) ;
return 0 ;

S

Software Engineering
Rochester Institute
of Technology

char

unsigned char

short

unsigned short

int
unsigned int = unsigned
long

unsigned long

long long
unsigned long long

Integer Types in C

one byte = 8 bits - possibly signed
one byte unsigned

two bytes = 16 bits signed

two bytes unsigned

"natural” sized integer, signed
"natural” sized integer, unsigned
four bytes = 32 bits, signed

four bytes, unsigned

eight bytes = 64 bits, signed

eight bytes, unsigned

‘@ Another Example — Count

Puncty

Software Engineering

Rochester Institute
of Technology

#include <stdlib.h>
#include <stdio.h>
<#tinclude <ctype.h>

int main() {
int tot_punct = 0 ; // declare & init. a local variable
int nchar ; // next character read

while((nchar = getchar()) != EOF) {
1if(ispunct(nchar)) {
++tot_punct ;
}
¥

printf("%d punctuation characters\n", tot_punct) ;
return 0 ;

‘@ Another Example — Count

Software Engineering P u n c
Rochester Institute

of Technology

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>

int main() {

int tot_punct = / declare & init. a local variable
nt ncharij::> // next character read

while((nchar = getchar()) != EOF) {
1if(ispunct(nchar)) {
++tot_punct ;
}
¥

printf("%d punctuation characters\n", tot_punct)
return 0 ;

t@ Another Example — Count

Software Engineering P u n c
Rochester Institute

of Technology

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>

int main() {

int tot_punct = 0 ; // de init. a local variable
int nchar ; t character read
<while((nchar = getchar()) != EOF) { >
1t C aspunccchary) {

++tot_punct ;

¥
¥

printf("%d punctuation characters\n", tot_punct) ;
return 0 ;

‘@ Another Example — Count

Software Engineering P u n c — =
Rochester Institute

of Technology

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>

int main() {
int tot_punct = 0 ; // declare & i . a local variable
int nchar ; // next charag¢yer read

while((nchar = getchar()) !
1if(ispunct(nchar)) {
++tot_punct ;
}
¥

printf("%d punctuation characters\n", tot_punct)
return 0 ;

‘@ Another Example Count

Software Engmeermg

Rochester Institut
ofTe h ol gy

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>

int main() {
int tot_punct = 0 ;
int nchar ;

printf("%d punctuation characters\n", tot_punct) ;
return 0 ;

‘@ Another Example — Count

Software Engineering

Rochester Institute
of Technology

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>

int main() {
int tot_punct =0 ; // d
int nchar ; //

init. a local variable
aracter read

while((nchar = getc = EOF) {
1f(ispunct(nch
++tot_punc
}
¥
<EEiEEf("%d punctuation characters\n", tot_puncﬁ:z:z:>
returmo6—

S

Software Engineering

Rochester Institute
of Technology

 Format string printed as is except when encounters '%'

Short Digression on Printf

%d
%f
%e
%s
%cC
%0 [/ %X

print integer as decimal

print floating point (fixed point notation)
print floating point (exponential notation)
print a string

print integer as a character

print integer as octal / hexadecimal

 Format modifiers - examples

%Nn.mf
%nd

e Example:
printf("%d loans at %5.2f%% interest\n",nloans, pct) ;

e See the stdio.h documentation for more on format control.

at least n character field with m fractional digits
at least n character field for a decimal value.

@ Boolean = Integer

Software Engineering
Rochester Institute

sriecmcioey . ® There is no boolean type in C.
 Qisfalse, everything else is true.
— False: 0 0.0 "\O' NULL (O pointer).
— True: 1 'a’ 3.14159
* The result of a comparison operatoris 0 or 1.

 Many programmers define symbolic constants:
#define TRUE (1)
#define FALSE (0)

* Pet Peeve:

BAD GOOD

if (value < Timit) { return value < limit ;
return TRUE ;

} else {

return FALSE ;
}

@ Compilation

Software Engineering

anssis e OQur systems use the GNU C compiler (gcc)

 The compilation process with two files (main.c, foo.c)
gcc -0 myprog main.c foo.c

@ Compilation

Software Engineering

Rochester Institute
of Technology

* Problems can occur all along the line:
— Unterminated comments can throw off the lexer.
— Syntax errors are detected by the parser.

— The code generator / optimizer can generate bad code (highly
unlikely).

— The linker may not be able to resolve all the external references.

* Notes on linking:
— Every object file has a table of contents.
— Some of the names are defined in the file (e.g., main).
— Some are needed from another file (e.g., printf).

— The linker tries to resolve these BUT:
* |t may not be able to find a symbol it needs (missing file?)
* |t may find two definitions of a symbol (name conflict).

