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Computer Memory Organization

Memory is a bucket of bytes.
Each byte is 8 bits wide.
Question: How many distinct values can a byte of data hold?
Bytes can be combined into larger units:
Half-words (shorts) 16 bits 65,536 combinations
Words (ints) 32 bits ~4 x 10° =~ 4 billion
Double words (long) 64 bits =~ 16 x 101® =~ 16 quadrillion
The bucket Is actually an array of bytes:
Think of it as an array named memory.
Then memory[ a ] is the byte at index / location / address a.
Normally the addresses run from 0 to some maximum.



Pictorially ... N byte Memory

Either way (horizontal or vertical) Is fine.

The key Is that memory Is logically an array
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a location (address = Ox6F65) by 1
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What's In a Number?

What does the hexadecimal number Ox4A6F65 mean?
Possibilities:

It could be the decimal number 4,878,181

It could be the string "Joe"

'J' = Ox4A, '0' = Ox6F, 'e' = 0x65

It could be the address of the 4,878,181st byte in memory

It could be an instruction to, say, increment (op code = 0x4A)
a location (address = Ox6F65) by 1

We don't until we use it!
If we send it to a printer, it's a string.
If we use it to access memory, it's an address.
If we fetch it as an instruction, it's an instruction.
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We can manipulate characters like numbers.

We can change instructions on the fly.

We can perform computation on addresses.
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We get weird printout (sending addresses to a printer).



Spiderman Is A "C" Programmer

The ability of numbers to "morph" their meaning is very
powerful.

We can manipulate characters like numbers.

We can change instructions on the fly.

We can perform computation on addresses.

BUT: What if we use a number other than intended:
We get run-time errors (using an integer as an address).
We get hard-to-fix bugs (executing data as instructions).
We get weird printout (sending addresses to a printer).

With great power
comes great responsibility.
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int *ip : Int i, *Ip ;

Equivalent to these two
declarations
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Pointers in C

Consider the following two declarations:
int 1 ;
int *ip ;
On most systems, both allocate 32 bits for 1 and 1p.

The difference?

1's contents are treated as an integer.
All we can manipulate is the integer value in i.

1p's contents are treated as an address (where an integer can
be found).

We can manipulate the address (make it point elsewhere).

We can manipulate the integer at the current address.



A Short Example

double x = 3.14159 : NAME | ADDR VALUE
double y = 2.71828 ; X 108 |3.14159
double *dp ; y 116 | 2.71828

dp 124 PPP??7?7?



double x =
double y =

double *dp ;

dp = &x ;

A Short Example

3.14159 ;
2.71828 ;

NAME
X

y
dp

ADDR
108
116
124

VALUE
3.14159

2.71828
2?7?7777



double x =
double y =
double *dp

dp =|&x ;

A Short Example

3.14159
2.71828

NAME ADDR

X 108
\Y, 116
dp 124

& = "address of"
The address of a variable is a
pointer to the variable's type

VALUE
3.14159

2.71828
2?7?7777
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A Short Example

double x = 3.14159 : NAME | ADDR VALUE
double y = 2.71828 ; X 108 |3.14159
double *dp ; y 116 | 2.71828

dp 124 108
dp = &x ;
X = *dp * 2.0 ;

* = "dereference"
The value the pointer addresses,
not the pointer itself



A Short Example — The Effect
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X = *dp * 2.0 ; // same as x = x * 2.0
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A Short Example

double x = 3.14159 ; NAME | ADDR VALUE
double y = 2.71828 ; X 108 |6.28318
double *dp ; y 116 | 2.71828

’ dp 124 116

dp = &x ;
X = *dp * 2.0 ; // same as x = x * 2.0

dp = &y ;

*dp += X ;



A Short Example — The Effect

double x = 3.14159 ; NAME | ADDR VALUE
double y = 2.71828 ; X 108 |6.28318
y 116 9.00146

double *dp ; = o 16

dp = &x ;
X = *dp * 2.0 ; // same as x = x * 2.0
dp = &y ;

*dp += X ;
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// Swap — the wrong way

void swap( grade_entry X, grade_entry y ) {
grade_entry temp ;

temp = X ; X =Y ; y = temp ;

return ;



Pointers — Reference Parameters

// Swap — the right way

void swap( grade_entry *x, grade_entry *y ) {
grade_entry temp ;

temp = *x ; *X =*y ; *y = temp ;

return ;
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Pointers — Call by Reference

// Array element exchange the wrong way

swap( grade _list[ 1 ], grade list[ j ] ) ;



Pointers — Call by Reference

// Array element exchange the right way

swap( &grade_list[ i ], &grade_list[ J ] )
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