
Personal SE

Computer Memory
Addresses
C Pointers

Computer Memory Organization

 Memory is a bucket of bytes.

Computer Memory Organization

 Memory is a bucket of bytes.
– Each byte is 8 bits wide.

Computer Memory Organization

 Memory is a bucket of bytes.
– Each byte is 8 bits wide.
– Question: How many distinct values can a byte of data hold?

Computer Memory Organization

 Memory is a bucket of bytes.
– Each byte is 8 bits wide.
– Question: How many distinct values can a byte of data hold?
– Bytes can be combined into larger units:

 Half-words (shorts) 16 bits 65,536 combinations
 Words (ints) 32 bits ≈ 4 × 109 ≈ 4 billion

 Double words (long) 64 bits ≈ 16 × 1018 ≈ 16 quadrillion

Computer Memory Organization

 Memory is a bucket of bytes.
– Each byte is 8 bits wide.
– Question: How many distinct values can a byte of data hold?
– Bytes can be combined into larger units:

 Half-words (shorts) 16 bits 65,536 combinations
 Words (ints) 32 bits ≈ 4 × 109 ≈ 4 billion

 Double words (long) 64 bits ≈ 16 × 1018 ≈ 16 quadrillion

 The bucket is actually an array of bytes:

Computer Memory Organization

 Memory is a bucket of bytes.
– Each byte is 8 bits wide.
– Question: How many distinct values can a byte of data hold?
– Bytes can be combined into larger units:

 Half-words (shorts) 16 bits 65,536 combinations
 Words (ints) 32 bits ≈ 4 × 109 ≈ 4 billion

 Double words (long) 64 bits ≈ 16 × 1018 ≈ 16 quadrillion

 The bucket is actually an array of bytes:
– Think of it as an array named memory.

Computer Memory Organization

 Memory is a bucket of bytes.
– Each byte is 8 bits wide.
– Question: How many distinct values can a byte of data hold?
– Bytes can be combined into larger units:

 Half-words (shorts) 16 bits 65,536 combinations
 Words (ints) 32 bits ≈ 4 × 109 ≈ 4 billion

 Double words (long) 64 bits ≈ 16 × 1018 ≈ 16 quadrillion

 The bucket is actually an array of bytes:
– Think of it as an array named memory.
– Then memory[a] is the byte at index / location / address a.

Computer Memory Organization

 Memory is a bucket of bytes.
– Each byte is 8 bits wide.
– Question: How many distinct values can a byte of data hold?
– Bytes can be combined into larger units:

 Half-words (shorts) 16 bits 65,536 combinations
 Words (ints) 32 bits ≈ 4 × 109 ≈ 4 billion

 Double words (long) 64 bits ≈ 16 × 1018 ≈ 16 quadrillion

 The bucket is actually an array of bytes:
– Think of it as an array named memory.
– Then memory[a] is the byte at index / location / address a.
– Normally the addresses run from 0 to some maximum.

Pictorially … N byte Memory

N - 1 0

N - 1

0

Either way (horizontal or vertical) is fine.

The key is that memory is logically an array

What's In a Number?

 What does the hexadecimal number 0x4A6F65 mean?

What's In a Number?

 What does the hexadecimal number 0x4A6F65 mean?
 Possibilities:

– It could be the decimal number 4,878,181
– It could be the string "Joe"

'J' = 0x4A, 'o' = 0x6F, 'e' = 0x65
– It could be the address of the 4,878,181st byte in memory
– It could be an instruction to, say, increment (op code = 0x4A)

a location (address = 0x6F65) by 1

What's In a Number?

 What does the hexadecimal number 0x4A6F65 mean?
 Possibilities:

– It could be the decimal number 4,878,181
– It could be the string "Joe"

'J' = 0x4A, 'o' = 0x6F, 'e' = 0x65
– It could be the address of the 4,878,181st byte in memory
– It could be an instruction to, say, increment (op code = 0x4A)

a location (address = 0x6F65) by 1

 How do we know??????

What's In a Number?

 What does the hexadecimal number 0x4A6F65 mean?
 Possibilities:

– It could be the decimal number 4,878,181
– It could be the string "Joe"

'J' = 0x4A, 'o' = 0x6F, 'e' = 0x65
– It could be the address of the 4,878,181st byte in memory
– It could be an instruction to, say, increment (op code = 0x4A)

a location (address = 0x6F65) by 1

 How do we know??????
 We don't until we use it!

What's In a Number?

 What does the hexadecimal number 0x4A6F65 mean?
 Possibilities:

– It could be the decimal number 4,878,181
– It could be the string "Joe"

'J' = 0x4A, 'o' = 0x6F, 'e' = 0x65
– It could be the address of the 4,878,181st byte in memory
– It could be an instruction to, say, increment (op code = 0x4A)

a location (address = 0x6F65) by 1

 How do we know??????
 We don't until we use it!

– If we send it to a printer, it's a string.
– If we use it to access memory, it's an address.
– If we fetch it as an instruction, it's an instruction.

Computer Numbers as Shape-Shifters

 The ability of numbers to "morph" their meaning is very
powerful.

– We can manipulate characters like numbers.
– We can change instructions on the fly.
– We can perform computation on addresses.

Danger Will Robinson! Danger!

 The ability of numbers to "morph" their meaning is very
powerful.

– We can manipulate characters like numbers.
– We can change instructions on the fly.
– We can perform computation on addresses.

 BUT: What if we use a number other than intended:
– We get run-time errors (using an integer as an address).
– We get hard-to-fix bugs (executing data as instructions).
– We get weird printout (sending addresses to a printer).

Spiderman Is A "C" Programmer

 The ability of numbers to "morph" their meaning is very
powerful.

– We can manipulate characters like numbers.
– We can change instructions on the fly.
– We can perform computation on addresses.

 BUT: What if we use a number other than intended:
– We get run-time errors (using an integer as an address).
– We get hard-to-fix bugs (executing data as instructions).
– We get weird printout (sending addresses to a printer).

With great power
comes great responsibility.

Pointers in C

 Consider the following two declarations:
int i ;

int *ip ;

Pointers in C

 Consider the following two declarations:
int i ;

int *ip ;
"*" says that ip is a
pointer, not an integer

Pointers in C

 Consider the following two declarations:
int i ;

int *ip ; The "*" is attached to
the variable, not the type

Pointers in C

 Consider the following two declarations:
int i ;

int *ip ;
int i, *ip ;

Equivalent to these two
declarations

Pointers in C

 Consider the following two declarations:
int i ;

int *ip ;

 On most systems, both allocate 32 bits for i and ip.

Pointers in C

 Consider the following two declarations:
int i ;

int *ip ;

 On most systems, both allocate 32 bits for i and ip.
 The difference?

– i's contents are treated as an integer – just a number.

– ip's contents are treated as an address (where an integer can
be found).

Pointers in C

 Consider the following two declarations:
int i ;

int *ip ;

 On most systems, both allocate 32 bits for i and ip.
 The difference?

– i's contents are treated as an integer.
 All we can manipulate is the integer value in i.

– ip's contents are treated as an address (where an integer can
be found).
 We can manipulate the address (make it point elsewhere).
 We can manipulate the integer at the current address.

A Short Example

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

NAME ADDR VALUE

x 108 3.14159

y 116 2.71828

dp 124 ???????

A Short Example

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

NAME ADDR VALUE

x 108 3.14159

y 116 2.71828

dp 124 ???????

A Short Example

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

NAME ADDR VALUE

x 108 3.14159

y 116 2.71828

dp 124 ???????

& = "address of"
The address of a variable is a
pointer to the variable's type

A Short Example – The Effect

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

NAME ADDR VALUE

x 108 3.14159

y 116 2.71828

dp 124 108

A Short Example

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

x = *dp * 2.0 ;

NAME ADDR VALUE

x 108 3.14159

y 116 2.71828

dp 124 108

A Short Example

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

x = *dp * 2.0 ;

NAME ADDR VALUE

x 108 3.14159

y 116 2.71828

dp 124 108

* = "dereference"
The value the pointer addresses,

not the pointer itself

A Short Example – The Effect

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

x = *dp * 2.0 ; // same as x = x * 2.0

NAME ADDR VALUE

x 108 6.28318

y 116 2.71828

dp 124 108

A Short Example

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

x = *dp * 2.0 ; // same as x = x * 2.0

dp = &y ;

NAME ADDR VALUE

x 108 6.28318

y 116 2.71828

dp 124 108

A Short Example – The Effect

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

x = *dp * 2.0 ; // same as x = x * 2.0

dp = &y ;

NAME ADDR VALUE

x 108 6.28318

y 116 2.71828

dp 124 116

A Short Example

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

x = *dp * 2.0 ; // same as x = x * 2.0

dp = &y ;

*dp += x ;

NAME ADDR VALUE

x 108 6.28318

y 116 2.71828

dp 124 116

A Short Example – The Effect

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

x = *dp * 2.0 ; // same as x = x * 2.0

dp = &y ;

*dp += x ;

NAME ADDR VALUE

x 108 6.28318

y 116 9.00146

dp 124 116

Pointers – Reference Parameters

Pointers – Reference Parameters

// Swap – the wrong way

void swap(grade_entry x, grade_entry y) {

 grade_entry temp ;

 temp = x ; x = y ; y = temp ;

 return ;

}

Pointers – Reference Parameters
// Swap – the wrong way

void swap(grade_entry x, grade_entry y) {

 grade_entry temp ;

 temp = x ; x = y ; y = temp ;

 return ;

}

// Swap – the right way

void swap(grade_entry *x, grade_entry *y) {

 grade_entry temp ;

 temp = *x ; *x = *y ; *y = temp ;

 return ;

}

Pointers – Call by Reference

Pointers – Call by Reference

// Array element exchange the wrong way

swap(grade_list[i], grade_list[j]) ;

Pointers – Call by Reference

// Array element exchange the wrong way

swap(grade_list[i], grade_list[j]) ;

// Array element exchange the right way

swap(&grade_list[i], &grade_list[j]) ;

	Personal SE
	Computer Memory Organization
	Computer Memory Organization
	Computer Memory Organization
	Computer Memory Organization
	Computer Memory Organization
	Computer Memory Organization
	Computer Memory Organization
	Computer Memory Organization
	Pictorially … N byte Memory
	What's In a Number?
	What's In a Number?
	What's In a Number?
	What's In a Number?
	What's In a Number?
	Computer Numbers as Shape-Shifters
	Danger Will Robinson! Danger!
	Spiderman Is A "C" Programmer
	Pointers in C
	Pointers in C
	Pointers in C
	Pointers in C
	Pointers in C
	Pointers in C
	Pointers in C
	A Short Example
	A Short Example
	A Short Example
	A Short Example – The Effect
	A Short Example
	A Short Example
	A Short Example – The Effect
	A Short Example
	A Short Example – The Effect
	A Short Example
	A Short Example – The Effect
	Pointers – Reference Parameters
	Pointers – Reference Parameters
	Pointers – Reference Parameters
	Pointers – Call by Reference
	Pointers – Call by Reference
	Pointers – Call by Reference

