Personal SE

Computer Memory
Addresses
C Pointers

Computer Memory Organization

Memory is a bucket of byres.

Computer Memory Organization

Memory is a bucket of bytes.
Each byte is 8 bits wide.

Computer Memory Organization

Memory is a bucket of bytes.
Each byte is 8 bits wide.
Question: How many distinct values can a byte of data hold?

Computer Memory Organization

Memory is a bucket of bytes.
Each byte is 8 bits wide.
Question: How many distinct values can a byte of data hold?

Bytes can be combined into larger units:
Half-words (shorts) 16 bits 65,536 combinations
Words (ints) 32 bits ~4 x 10° =~ 4 billion
Double words (long) 64 bits =~ 16 x 101® =~ 16 quadrillion

Computer Memory Organization

Memory is a bucket of bytes.
Each byte is 8 bits wide.
Question: How many distinct values can a byte of data hold?

Bytes can be combined into larger units:
Half-words (shorts) 16 bits 65,536 combinations
Words (ints) 32 bits ~4 x 10° =~ 4 billion
Double words (long) 64 bits =~ 16 x 101® =~ 16 quadrillion

The bucket is actually an array of bytes:

Computer Memory Organization

Memory is a bucket of bytes.
Each byte is 8 bits wide.
Question: How many distinct values can a byte of data hold?

Bytes can be combined into larger units:
Half-words (shorts) 16 bits 65,536 combinations
Words (ints) 32 bits ~4 x 10° =~ 4 billion
Double words (long) 64 bits =~ 16 x 101® =~ 16 quadrillion

The bucket Is actually an array of bytes:
Think of it as an array named memory.

Computer Memory Organization

Memory is a bucket of bytes.
Each byte is 8 bits wide.
Question: How many distinct values can a byte of data hold?
Bytes can be combined into larger units:
Half-words (shorts) 16 bits 65,536 combinations
Words (ints) 32 bits ~4 x 10° =~ 4 billion
Double words (long) 64 bits =~ 16 x 101® =~ 16 quadrillion
The bucket Is actually an array of bytes:
Think of it as an array named memory.
Then memory[a] is the byte at index / location / address a.

Computer Memory Organization

Memory is a bucket of bytes.
Each byte is 8 bits wide.
Question: How many distinct values can a byte of data hold?
Bytes can be combined into larger units:
Half-words (shorts) 16 bits 65,536 combinations
Words (ints) 32 bits ~4 x 10° =~ 4 billion
Double words (long) 64 bits =~ 16 x 101® =~ 16 quadrillion
The bucket Is actually an array of bytes:
Think of it as an array named memory.
Then memory[a] is the byte at index / location / address a.
Normally the addresses run from 0 to some maximum.

Pictorially ... N byte Memory

Either way (horizontal or vertical) Is fine.

The key Is that memory Is logically an array

What's In a Number?

What does the hexadecimal number Ox4A6F65 mean?

What's In a Number?

What does the hexadecimal number Ox4A6F65 mean?
Possibilities:

It could be the decimal number 4,878,181

It could be the string "Joe"

'J' = Ox4A, '0' = Ox6F, 'e' = 0x65

It could be the address of the 4,878,181st byte in memory

It could be an instruction to, say, increment (op code = 0x4A)
a location (address = Ox6F65) by 1

What's In a Number?

What does the hexadecimal number Ox4A6F65 mean?
Possibilities:

It could be the decimal number 4,878,181

It could be the string "Joe"

'J' = Ox4A, '0' = Ox6F, 'e' = 0x65

It could be the address of the 4,878,181st byte in memory

It could be an instruction to, say, increment (op code = 0x4A)
a location (address = Ox6F65) by 1

What's In a Number?

What does the hexadecimal number Ox4A6F65 mean?
Possibilities:
It could be the decimal number 4,878,181

It could be the string "Joe"
'J' = Ox4A, '0' = Ox6F, 'e' = 0x65
It could be the address of the 4,878,1815t byte in memory

It could be an instruction to, say, increment (op code = 0x4A)
a location (address = Ox6F65) by 1

We don't until we use It!

What's In a Number?

What does the hexadecimal number Ox4A6F65 mean?
Possibilities:

It could be the decimal number 4,878,181

It could be the string "Joe"

'J' = Ox4A, '0' = Ox6F, 'e' = 0x65

It could be the address of the 4,878,181st byte in memory

It could be an instruction to, say, increment (op code = 0x4A)
a location (address = Ox6F65) by 1

We don't until we use it!
If we send it to a printer, it's a string.
If we use it to access memory, it's an address.
If we fetch it as an instruction, it's an instruction.

Computer Numbers as Shape-Shifters

The ability of numbers to "morph" their meaning Is very
powerful.

We can manipulate characters like numbers.

We can change instructions on the fly.

We can perform computation on addresses.

Danger Will Robinson! Danger!

The ability of numbers to "morph" their meaning is very
powerful.

We can manipulate characters like numbers.

We can change instructions on the fly.

We can perform computation on addresses.

BUT: What if we use a number other than intended:
We get run-time errors (using an integer as an address).
We get hard-to-fix bugs (executing data as instructions).
We get weird printout (sending addresses to a printer).

Spiderman Is A "C" Programmer

The ability of numbers to "morph" their meaning is very
powerful.

We can manipulate characters like numbers.

We can change instructions on the fly.

We can perform computation on addresses.

BUT: What if we use a number other than intended:
We get run-time errors (using an integer as an address).
We get hard-to-fix bugs (executing data as instructions).
We get weird printout (sending addresses to a printer).

With great power
comes great responsibility.

Pointers in C

Consider the following two declarations:
int 1 ;
int *ip ;

Pointers in C

Consider the following two declarations:
T "*'" says that ip is a
int @p :

pointer, not an integer

Pointers in C

Consider the following two declarations:
int 1 _
int @p : The Is attached to

the variable, not the type

Pointers in C

Consider the following two declarations:

int 1 ; e
int *ip : Int i, *Ip ;

Equivalent to these two
declarations

Pointers in C

Consider the following two declarations:
int 1 ;
int *ip ;
On most systems, both allocate 32 bits for 1 and ip.

Pointers in C

Consider the following two declarations:
int 1 ;
int *ip ;
On most systems, both allocate 32 bits for 1 and 1p.

The difference?
1's contents are treated as an /nteger — just a number.

1p's contents are treated as an address (where an integer can
be found).

Pointers in C

Consider the following two declarations:
int 1 ;
int *ip ;
On most systems, both allocate 32 bits for 1 and 1p.

The difference?

1's contents are treated as an integer.
All we can manipulate is the integer value in i.

1p's contents are treated as an address (where an integer can
be found).

We can manipulate the address (make it point elsewhere).

We can manipulate the integer at the current address.

A Short Example

double x = 3.14159 : NAME | ADDR VALUE
double y = 2.71828 ; X 108 |3.14159
double *dp ; y 116 | 2.71828

dp 124 PPP??7?7?

double x =
double y =

double *dp ;

dp = &x ;

A Short Example

3.14159 ;
2.71828 ;

NAME
X

y
dp

ADDR
108
116
124

VALUE
3.14159

2.71828
2?7?7777

double x =
double y =
double *dp

dp =|&x ;

A Short Example

3.14159
2.71828

NAME ADDR

X 108
\Y, 116
dp 124

& = "address of"
The address of a variable is a
pointer to the variable's type

VALUE
3.14159

2.71828
2?7?7777

A Short Example — The Effect

double x = 3.14159 ; NAME | ADDR VALUE
double y = 2.71828 ; X 108 |3.14159
Yy 116 2.71828

double *dp ; i — o

dp = &x ;

A Short Example

double x = 3.14159 ; NAME | ADDR VALUE
double y = 2.71828 ; X 108 |3.14159
double *dp ; y 116 |2.71828

’ dp 124 108

dp = &x ;
X = *dp * 20 -

A Short Example

double x = 3.14159 : NAME | ADDR VALUE
double y = 2.71828 ; X 108 |3.14159
double *dp ; y 116 | 2.71828

dp 124 108
dp = &x ;
X = *dp * 2.0 ;

* = "dereference"
The value the pointer addresses,
not the pointer itself

A Short Example — The Effect

double x = 3.14159 : NAME | ADDR VALUE
double y = 2.71828 ; X 108 |6.28318
double *dp ; y 116 | 2.71828

dp 124 108
dp = &x ;
X = *dp * 2.0 ; // same as x = x * 2.0

A Short Example

double x = 3.14159 ; NAME | ADDR VALUE
double y = 2.71828 ; X 108 |6.28318
double *dp ; y 116 | 2.71828

’ dp 124 108

dp = &x ;
X = *dp * 2.0 ; // same as x = x * 2.0

dp = &y ;

A Short Example — The Effect

double x = 3.14159 ; NAME | ADDR VALUE
double y = 2.71828 ; X 108 |6.28318
y 116 2.71828

double *dp ; = o e

dp = &x ;
X = *dp * 2.0 ; // same as x = x * 2.0

dp = &y ;

A Short Example

double x = 3.14159 ; NAME | ADDR VALUE
double y = 2.71828 ; X 108 |6.28318
double *dp ; y 116 | 2.71828

’ dp 124 116

dp = &x ;
X = *dp * 2.0 ; // same as x = x * 2.0

dp = &y ;

*dp += X ;

A Short Example — The Effect

double x = 3.14159 ; NAME | ADDR VALUE
double y = 2.71828 ; X 108 |6.28318
y 116 9.00146

double *dp ; = o 16

dp = &x ;
X = *dp * 2.0 ; // same as x = x * 2.0
dp = &y ;

*dp += X ;

Pointers — Reference Parameters

Pointers — Reference Parameters

// Swap — the wrong way

void swap(grade_entry X, grade_entry y) {
grade_entry temp ;

temp = X ; X =Y ; y = temp ;

return ;

Pointers — Reference Parameters

// Swap — the right way

void swap(grade_entry *x, grade_entry *y) {
grade_entry temp ;

temp = *x ; *X =*y ; *y = temp ;

return ;

Pointers — Call by Reference

Pointers — Call by Reference

// Array element exchange the wrong way

swap(grade _list[1], grade list[j]) ;

Pointers — Call by Reference

// Array element exchange the right way

swap(&grade_list[i], &grade_list[J])

	Personal SE
	Computer Memory Organization
	Computer Memory Organization
	Computer Memory Organization
	Computer Memory Organization
	Computer Memory Organization
	Computer Memory Organization
	Computer Memory Organization
	Computer Memory Organization
	Pictorially … N byte Memory
	What's In a Number?
	What's In a Number?
	What's In a Number?
	What's In a Number?
	What's In a Number?
	Computer Numbers as Shape-Shifters
	Danger Will Robinson! Danger!
	Spiderman Is A "C" Programmer
	Pointers in C
	Pointers in C
	Pointers in C
	Pointers in C
	Pointers in C
	Pointers in C
	Pointers in C
	A Short Example
	A Short Example
	A Short Example
	A Short Example – The Effect
	A Short Example
	A Short Example
	A Short Example – The Effect
	A Short Example
	A Short Example – The Effect
	A Short Example
	A Short Example – The Effect
	Pointers – Reference Parameters
	Pointers – Reference Parameters
	Pointers – Reference Parameters
	Pointers – Call by Reference
	Pointers – Call by Reference
	Pointers – Call by Reference

