Software Design Specification for InserterVision Report System
 Page 7

[image: image1.emf] : User : VDKSession : PageListTemplates : PageReportStandard : PageListDataSets

page=PageListTemplates

instantiate

REQUEST=Save & Display

page=PageReportStandard

instantiate

store template selection

get datasets selected

array(empty)

set status message(Please select dataset)

page=PageListDatasets

instantiate

display list form to User

page=null

Software Design Specification

For

InserterVision Report System

Release 1.0

Revision 2.0
by VDK-RIT

5/19/2004
Revision History
	Name
	Date
	Reason for Change
	Version

	Greg Dicheck
	2/9/2004
	Initial draft
	Draft 1

	Greg Dicheck
	3/3/2004
	Added use case descriptions and logical views
	Draft 2

	Greg Dicheck
	3/14/2004
	Added database structures
	Draft 3

	Greg Dicheck
	3/22/2004
	Added UI prototypes
	Draft 4

	Greg Dicheck
	3/27/2004
	Updated UI prototypes and database structures
	Draft 5

	Greg Dicheck
	3/28/2004
	Updated database structures;
Added deployment and data flow diagrams
Added size/performance and quality criteria
	Draft 6

	Greg Dicheck
	3/28/2004
	Updated database structures;
Added deployment and data flow diagrams
Added size/performance and quality criteria
	Draft 6

	Adam Beck
	3/30/2004
	Revise structure and content
	Revision 1

	Adam Beck
	4/23/2004
	Revise structure and content per alpha and Beta
	Revision 1.1

	Adam Beck
	5/19/2004
	Revise structure and content per gamma
	Revision 2.0

	
	
	
	

	
	
	
	

Table of Contents

41.
Introduction

41.1
Purpose

41.2
Scope

41.3
Intended Audience

41.4
References

41.5
Definitions, Acronyms, and Abbreviations

52.
System Overview

62.1
System Context Diagram

63.
Design Considerations

63.1
Assumptions and Dependencies

63.2
General Constraints

63.3
Goals and Guidelines

73.4
Development Methods

74.
Architectural Strategies

95.
System Architecture

95.1
Primary Components

95.1.1
System High Level Collaboration Diagrams

95.1.1.1
Login/Authentication

105.1.1.2
Data Management and Display

115.1.1.3
Auxiliary Functionality

136.
Detailed System Design

136.1
Subsystem Architecture

136.2
Detailed Subsystem Design

136.2.1
Diagram Legend

146.2.2
High Level Classes

156.2.3
Page Interaction Diagram

166.2.4
Displayable Pages

176.2.5
Data Set

186.2.6
Data Set creation Interaction Diagram

196.2.7
Template

216.2.8
Template Editors

226.2.9
Editor Data Flow Diagram

226.2.10
DBHandler

236.2.11
Authentication

236.2.12
IDMaker

236.2.13
Other Important Files

236.2.14
MySQL database

246.3
Features Not Included

246.4
Features Wished to be Included

256.5
Deployment View

266.6
Original User Interface Prototype Pages

266.6.1
Login/Authentication

266.6.2
Logout

266.6.3
Data Sets

276.6.4
View Report

286.6.5
Templates

286.6.6
Template Editors

317.
Appendix

317.1
Glossary

327.2
Data Dictionary

327.3
MySQL Schema

357.4
Directory Structure

367.5
PHPDocs

1. Introduction
1.1 Purpose

This document will outline in detail the software architecture and design for the InserterVision Report System (IVRS). This document will provide several views of the system's design in order to facilitate communication and understanding of the system. It intends to capture and convey the significant architectural and design decisions that have been made for the IVRS.

1.2 Scope

This document provides the architecture and design of Release 1.0 of the IVRS. It will show how the design will accomplish the functional and non-functional requirements detailed in the VDK-RIT Software Requirements Specification (SRS) document.

1.3 Intended Audience
This document is written on a technical level to address the technical department of the customer that will continue the system after VDK-RIT and the team's technical management.

1.4 References
· VDK-RIT Software Requirements Specification (SRS) Revision 1.2
· VDK-RIT Use Case Document (UCD) Revision 1.1

· VDK-RIT Vision and Scope Document Revision 1.0

1.5 Definitions, Acronyms, and Abbreviations
· DBMS – Database Management System. A programmable interface which provides a common layer of abstraction between a physical database and a user or external program.
· HTML – Hypertext Markup Language. Set of markup symbols or codes intended for display on a World Wide Web browser page. The markup instructs a web browser on how to display words and images for a web page.
· IVRS - InserterVision Report System

· PHP – Hypertext Preprocessor. An extensible scripting language, suited for web-based development, typically embedded in HTML.

2. System Overview
The project is a low cost management and reporting system accessible over a network to be built for Videk, a local Rochester company. Videk has proposed a product that can accompany their existing commercial product, called InserterVision. InserterVision is a camera based scanning system for recording and monitoring machinery that automatically stuffs envelopes and seals envelopes for mass mailings. Videk supplies the camera equipment and software to accomplish this. Videk's software provides control of current jobs but has no recording or display of past jobs. A job is all the mailings done on one machine in one session. The product that Videk wants us to develop is a low cost software/hardware system to provide this capability in a stand-alone application.

The scope of the project is to make a client-server architecture for one to thirty users who can access, format and print reports with data collected from the Videk camera scanning equipment for completed jobs. Videk will develop and provide the interface for populating the IVRS's Database Management System (DBMS) from the Camera System. The IVRS to be developed by VDK-RIT, the RIT team developing this reporting system, will provide a controlled and user friendly interface to this data from any PC within the internal network of Videk's customer. In order to provide an intelligent low-cost system, open source licensed components and tools will be considered preferable. This initial version of the IVRS is meant to be deployed with the InserterVision software. The IVRS designed by VDK-RIT will be implemented as a functional proof of concept and be turned over to Videk for deployment and further development.

Customers of Videk that purchase InserterVision have their mailing jobs scanned by the hardware/software package. IVRS is to be a stand-alone application deployed in conjunction with this package to supply reporting, sorting and data management of the data sets of completed mailing jobs. The Context diagram (2.1) illustrates the external entities and system interfaces for release 1.0.
2.1 System Context Diagram
[image: image2.png]VIDEK

Clearly a company with vision™

3. Design Considerations

3.1 Assumptions and Dependencies
See VDK-RIT Software Requirements Specification Revision 1.2 Section 2.8 for details.

3.2 General Constraints
See VDK-RIT Software Requirements Specification Revision 1.2 Section 2.6 for details.
3.3 Goals and Guidelines
· Emphasis shall be placed on Usability as the User Interface will be used by users without much training.
· The design must reflect the quality of Modifiability as the customer, Videk, must be able to adapt it for various uses by the final end users, Videk's customers.

· The system must be fully functional, tested and deployable within the scheduled time frame.

· The system must be able to be modified by the user to display the target data in various reports for various purposes.
3.4 Development Methods
This project is being conducted using a modified waterfall paradigm with three implemental builds (alpha, beta, gamma). The development process is formal with document and code reviews.

4. Architectural Strategies
The architecture and design has been influenced by the following design decisions and strategies:

· The design shall use Object Oriented Principles (OOP). The trade-off of increased code overhead and object message passing is considered justified by the gain of modularization of functionality, data encapsulation, communication through interfaces and re-use through polymorphism. In addition, the entire team is familiar with this paradigm and a design of this type will facilitate communication amongst the developers.
· Entry points for PHP script activation will be standard PHP code constructs but will immediately transition to OOP PHP functions. This is the compromise in a language that is still transitioning to full OOP functionality.
· The overall system is designed upon a client-server approach. This is an established and well-understood architecture and presents no problems to the team.
· Authentication will be limited to password checking on initial login and a session ID subsequently. This is considered sufficient to the low risk nature of the data.
· The primary purpose of the system is the formatted and filtered dissemination of data captured by the Videk Camera System stored in the DBMS. Formatting and filtering of this data is by the use of Templates, both pre-defined and user created, Editors will be provided for the creation and modification of these Templates to provide the necessary modifiability and the interfaces to these editors will be as intuitive as possible. Advanced Templates with the most open -ended functionality will be kept separate from the more limited and easier to learn Standard and Combined Templates. This separation of functionality and intuitive interface will help provide the necessary Usability.
· The DBMS will be shared by the system and Videk's Camera System that populates it. There is no direct interface between these systems so concurrency will be handled by the built-in functions in MySQL. It will be necessary to not lock the database in such a way that the camera system cannot populate it.

· Details of sessions, Templates, User accounts and the data from the camera system will reside in the DBMS. Access to this data will be easier and more secure than creating files on file system.

· Subsequent to login, all external contacts from the users will be directed to the IVRS.php file. This entry point creates an appropriate session object, of class VDKSession, which will handle the requests of the user. VDKSession.php will act as a facade to the user and a mediator to the system for the life of each request. The VDKSession will also limit the life of the contact for users that exceed a time limit with no activity. This is a standard housekeeping and security measure.
· Communication with the users will be by the HTML protocol as this is well-supported by the selected browsers and PHP.

· PHP and MySQL were selected because they had the necessary capabilities to provide the needed services to the user and their GNU licenses will reduce product cost.

· The team decided to not use PHP's built in session functions but to provide our own for increased flexibility.

· The system is meant to be modifiable:

· By the use of new pre-defined templates created by Videk as well as the end-customer.

· By having the system adapt to additional fields added by Videk to the database schema to established tables defined by VDK_RIT team only.

· By changes in functionality through code modification and replacement by Videk.

5. System Architecture
5.1 Primary Components
5.1.1 System High Level Collaboration Diagrams
5.1.1.1 Login/Authentication
[image: image3.bmp]
Client Interface: The browser in use by the user.
Controller: The initial point of contact for browser requests prior to Log-in.
Session: The point of contact for all browser requests for users that are logged-in and authenticated.

User Account: Contains data retrieved from the DBMS specifying the user's access level and permissions.

Timer: System object attached to a session to determine if a user has been inactive long enough to be logged off the system.

DBMS Interface: Retrieves/Stores data in the system from/to the DBMS.

5.1.1.2 Data Management and Display
[image: image4.emf]PageAdminViewLog

PageListDataSets

PageRegular

PageListTemplates

PageUnderConstruction

PageHelp

PageAdmin

PageLogin

PageLogout

PageReportPrinterFrien

dly

PageTableDisplay

PageSystemUnavailable

PageReportStandard

DBHandler

DBMS

FileSystem

Recorder

Page

VDKSession

[image: image5.emf]SortKey

PageReportPrinterFriendly

DataSetLocal

DataSetRemote

TemplateAdvanced

TemplateCombined

TemplateDuplicate

TemplateMissing

TemplateStandard

FilterDuplicates

FilterSpecial

FilterCount

FilterSum

FilterAverage

FilterStandard

FilterSQL

ObjectFactory

PageReportStandard

MetaColumns

Filter

DataSet

Template

SortCriteria

Controller: Mediates communication between the sub-systems.
Template: Pre-defined format and order and filtering to apply to a Data Set. Template information is stored in the DBMS.
Sort Criteria: Multiple Sort criteria used to re-order the records in the Data Set.

Data Set: Retrieved data from the DBMS encompassing the results of one or more DBMS Data Sets.

Report Generation: Brings together the Data Set, Template and Sort Criteria and generate a formatted Report in a web page.

Template Editor: Service to create and modify Templates.
DB Schema: Schema of table and field layout in the DBMS.

File System: Computer file system for alternate storage of Data Sets.
5.1.1.3 Auxiliary Functionality
[image: image6.emf] : PageReportStandard : VDKSession

 : ObjectFactory

 : DBHandler

 : MetaColumns

 : FilterStandard

 : DataSetLocal

 : TemplateStandard

get ObjectFactory

ObjectFactory reference

build Template(template id)

read data Template(id)

data

instantiate(data, this)

build column(column id)

read data(column id)

data

data

instantiate column(data)

build filter(filter id)

read data(filter id)

data

data

instantiate filter(data)

read dataset(data set ids, filter string)

data

get filter string()

filter string

data < LOCAL_LIMIT

instantiate(data)

visit(ref to Template)

execute(this)

build dataset(dataset ids,template)

set Columns(column names)

get names()

names

execute(ref to dataset)

various actions

ref to dataset

get row of report

build output and repeat

Controller: Tasked with creation of logical components and mediation of communication between them.
File System: Storage of help pages and System Log.
Help: Tasked with creation of help pages when requested. Information is stored in the File System.

Logger: Tasked with maintaining a System Log of system user actions on the File System.
6. Detailed System Design
6.1 Subsystem Architecture
6.2 Detailed Subsystem Design
6.2.1 [image: image7.emf]ObjectFactory

DataSetLocal

DataSetRemote

DataSet

Diagram Legend
6.2.2 High Level Classes
[image: image8.emf]Local Intranet

File

System

DBMS

Report System

InserterVision

Camera System

Web Browsers

The IVRS.php contact point creates a VDKSession object. This object creates a Login object that accomplishes the authentication, and if successful, creates a record in the DBMS for this session with a unique session key. Subsequent browser contacts will be to the IVRS contact points which will instantiate the VDKSession object which returns itself to a valid state from the information in the DBMS for this session, accessed via the session key.

The VDKSession object acts as a mediator between the Pages and the resources it has created (e.g. the DBHandler). It provides full authentication at the start of a session and checks the session id and the URL on subsequent contacts in that session. Beyond this authentication it does not try to influence the flow of control. The VDKSession object was not meant to encapsulate control logic. The control logic is in the individual Pages.

6.2.3 [image: image9.png]Authentication

Type your user name and password to access this system

User name [smith

Password

Togn

Page Interaction Diagram

The VDKSession looks at the "page" REQUEST variable to determine what page object to instantiate and passes control to it at the execute() method. The return of that method can be a name of another page to give control to or null which causes an end and the system waits for the next incoming post. The contract between the VDKSession and the individual pages is that they can handle execution according to their function and the REQUEST variables coming in and the control will keep coming back to that page as long as it returns null. If unable to execute or execution is done it can pass back what the name of the page to execute or DEFAULT_PAGE constant.

The above scenario attempts to show this. It begins when the user looking at the form provided by PageListTemplates has selected a template and selects Save & Display. The action would be then to display the currently selected dataset(s) according to this template. But there are no data sets selected so PageReportStandard cannot provide a report and must instead redirect to PageListDatasets to have the User make that selection.

VDKSession also acts as a source of resources to the Pages. Access to the ObjectFactory, DBMS, Account information on the User, the Recorder for logging and session info are available.

6.2.4 Displayable Pages
[image: image10.png]Ending Session

Are you sure that you would like to exit the system now?

B Cancal

Pages are concerned with providing HTML pages to the User and capturing his interaction. Each Page has an area of functionality.

Page and PageRegular provide common functionality such as displaying the Navigation Bar (Nav Bar) at the top of the page.
PageReportStandard provides a formatted report of the selected Data Sets and PageReportFriendly provides the same report (child class) but with no controls and in a new window.

PageTableDisplay provides a common output of an object table. These are tables such as User Accounts, Templates and Data Sets. Each of the individual pages, PageListDataSets, PageListTemplates and PageAdmin, use this functionality to display their respective tables and handle all changes to the DBMS for that kind of table.
The other pages, PageLogin, PageLogout, PageHelp, PageUnderConstruction and PageSystemUnavailable, only need the Nav bar and provide the rest of the content.

The ObjectFactory, when requested, will build the appropriate Data Set. Given a Data Set ID or IDs and a Template, the factory queries the DBMS via the DBHandler. If the resultant return set from the DBMS is less than a pre-set limit a DataSetLocal object is created and returned and a DataSetRemote otherwise.

The DataSetLocal retains the resultant information in its own internal data representation and no new queries to the DBMS are necessary,

The DataSetRemote maintains the state of the resultant ID only. All queries for data are passed to the DBHandler associated on instantiation. Therefore all information continues to reside on the database.

All Pages get service access to the DBMS by using the DBHandler attached to the VDKSession and log their respective activities via the session object to the Recorder.

6.2.5 Data Set
[image: image11.png]Logout Data Sets pl: Sort.
Choose a Data Set
2 1001 | 70-1550 2/7/2004 @ 9:01AM
1002 | 70-1550 2/7/2004 @ 9:10AM
1003 | L2-7220 2/7/2004 @ 9:35AM
1004 | 11-HPLJ 2/7/2004 @ 10:45AM
2 1005 | 70-1550 2/7/2004 @ 11:13AM
1006 | 11-HPLJ 2/7/2004 @ 12:55PM
1007 | L2-7220 2/7/2004 @ 1:06PM
1008 | 70-1550 2/7/2004 @ 2:25PM

The DataSet contains the information gathered by the selection of data sets on the PageListDataSets and is filtered and sorted by the criteria contained in the selected Template. When PageReportStandard starts the Data Set IDs and the Template Id is passed to the ObjectFactory. The ObjectFactory instantiates the Template and queries the DBMS using a WHERE clause obtained from the Template. The resultant information is given to the newly instantiated DataSet object and this data is again filtered and sorted by passing the Template to it as a visitor.
If the information returned from the query exceeds a defined limit, a DataSetRemote object is created otherwise a DataSetLocal object is instantiated. This is a trade-off between the speed of having the information immediately available (DataSetLocal) with the corresponding hit in memory or the reduced memory consumption of leaving the data in the DBMS with the DataSetRemote object accessing it there with the subsequent reduction in speed. Both objects maintain the DataSet interface and therefore can be treated as one by the system.

6.2.6 Data Set creation Interaction Diagram
[image: image12.png]Logout DataSets Templates

Sort Admin

Report generated by [smith on 2/9/2004 @ 10:30 AM

SAMPLE REPORT @ Printer Friendly Version
ID# Time Completed Category Description
1001| 2/7/2004 @ 9:01AM| Customer Shipping NYC Shipping|
1002| 2/7/2004 @ 9:10AM| Internal Job| Daily Internal Mailings|
1003| 2/7/2004 @ 9:35AM| Speciall Custom Job for RIT|
1004 2/7/2004 @ 10:45AM| Customer Shipping|
1005| 2/7/2004 @ 11:13AM| Customer Shipping Salem, OR Shipping|
1006| 2/7/2004 @ 12:55PM| Internal Job| Payroll Internal Mailing|
1007| 2/7/2004 @ 1:06PM| Customer Shipping San Diego, CA Shipping|
1008| 2/7/2004 @ 2:25PM| Internal Job| Monthly Company Newsletter|

The above scenario is meant to show how a Data Set is created by the PageStandardReport to obtain the data for the report. The scenario starts when control has been given to the Page and after it has outputted the standard page header. The actual access to the DBMS and the loops creating columns and filters has been left out for clarity.

6.2.7 Template
[image: image13.png]Logout DataSets Templat

Title
Weekly Report

Sort

Choose a Template

Descri

John Smith's weekly summary

Admin

Last Updated
2/7/2004 @ 9:01AM

Finance Report

John Smith's monthly summary

2/7/2004 @ 9:10AM

Boston Report

Boston, MA shipping log

2/7/2004 @ 9:35AM

Daily Status

Daily shipping report

2/7/2004 @ 10:45AM

Montly Status

John Smith's monthly summary

2/7/2004 @ 11:13AM

Yearly Status

John Smith's yearly summary

2/7/2004 @ 12:55PM

Pitisburgh Report

Pittsburgh, PA shipping log

2/7/2004 @ 1:06PM

Dallas Report

Dallas, TX shipping log

2/7/2004 @ 2:25PM

SetTempite

The Templates provide format, filtering and sorting of the Data Set object. This service is provided at Data Set creation.

The Template interface is maintained by the individual types of templates.
The TemplateStandard uses a stored order to determine the order of the columns in the data. In addition, an aggregation of Filter objects are included which act to remove records that do not meet its criteria. The filters can be applied to a defined Data Set or can be queried for the WHERE portion of a query string.
The TemplateAdvanced uses the same ordering scheme but instead of filters it maintains a query string that defines and filters the data request. This provides an open ended functionality to the user to refine his display of data.
The TemplateDuplicate is a special use Template that searches for duplicates in a given field and only those records are displayed.

The TemplateMissing is another special use that searches a given field, removes all the data, and then displays a report listing what sequence numbers are missing from the given numeric field.

The TemplateCombined provides a report that consists of a number of the other kinds of Templates.

The templates provide the filtering by the use of an aggregation of Filter objects.
The FilterStandard uses an operator (=,!=,>,>=,<,<=) and an operand on a specific field. Those records that do not meet the filter's criteria are removed from the DataSet.

The FilterSQL is in a TemplateAdvanced and provides a User defined SQL WHERE clause to the initial creation of the DataSet.

The FilterDuplicates is in a TemplateDuplicate and looks for duplicates in a specified field.

The FilterCount, FilterSum and FilterAverage filters provide an addition at the bottom of the DataSet records that have the result of count, sum or average respectively.

With the exception of the TemplateCombined, the templates keep information about the ordering of the columns (fields) and their display width and other information in data objects called MetaColumns.

With the exception of TemplateCombined, TemplateMissing and TemplateDuplicate the template objects contain a single SortCriteria object. This object contains and manages an aggregation of SortKeys. These keys sort the DataSet as a visitor. The order of the sort keys is reversed as the first is primary.
6.2.8 Template Editors
[image: image14.png]STANDARD TEMPLATE EDITOR

Report Title [5tas for Nex Financial Mseiing

Description [Jonn Smill's Finishing Dept. Fnances

Dot o Dot Con 53 Coa
3 | Cotumn# 1 2
S | ColumnTitle |[Job# Finished
4
Data Source
Filter using E1= [1001 (=] [2:00
3 | Andfitterwith |15 [9999 1] [0:00
g
E | calculate ot (Count
o um “isum
Averge verge

Fraven Report Sove Tenpie Seve Copy A Caneel

To provide the level of Usability and Extensibility required in this project it was necessary to create a series of Editors to provide the easy to learn ability to create and modify Templates. Each of these Editors trace back to PageRegular to provide the Nav bar as each Editor must be an html form. Initial creation or edit request is passed to TemplateStandard which instantiates the Template and queries it for the appropriate Editor name. If that name is not EditorStandard, the name is passed back to VDKSession which instantiates the correct Editor and passes it the Template. The Template Editors use services defined in EditorStandard and override or provide new functionality where necessary.

EditorReportHeader and EditorUserAccount are special editors for the modification and creation of a Company Header or a User Account respectively.
6.2.9 Editor Data Flow Diagram
[image: image15.png]ADVANCED TEMPLATE EDITOR

Report Title [Sials for Next Financial Mesting

Description [Jonn Smill's Finshing Dept. Fnances

Dot o Dot Con 53 Coa
3 | Cotumn# 1 2
S | ColumnTitle |[Job# Finished
4
Data Source
T | calculate et JCoumt
S um “isum
K verge E—

Optionally, you can refine results using this SQL search string ...
SQL: [SELECT JoblD FROM Jobs WHERE Date="1/472004" TestSaL

Fraven Report Sove Tenpie Seve Copy A Caneel

[image: image16.png]TEMPLATE EDITOR

Type a title for this report

Report Title [5is for Next Fnancial Meeling

Description [John Smits Finisting Dept Finances

Select a template from the drop down menu and type a title for the section

Section Title [Dally Report

Template [Reportof e D2y [7]

Section Title [Weskly Summary

Template

Append More Add 3 Tenpise

Fraven Report Sove Tenpie Seve Copy A Caneel

[image: image17.png]Sorting

Select up to three fields to sort data sets by

Field Name Sort Order
First, sort by ®Ascending O Descending
Next, sort by ®Ascending O Descending
Then, sort by ®Ascending O Descending

s Caneel

[image: image18.emf]Boundary

Service

Data Entity

View

Resource

A Service performs actions on a Data

Entity

A Data Entity maintains state

A Boundary is the contact point for

communication with the User or an

external Resource

A View provides the HTML output and

form to initiate the next contact

A Resource is an external system

usually used for persistance

Interface

A class that defines an established

interface by which child classes can be

interacted by

[image: image19.emf]PageRegular

DBHandler

DBMS

FileSystem

Recorder

Page

VDKSession

EditorReportHeader

Template

Account

EditorUserAccount

TemplateCombined

EditorCombined

TemplateAdvanced

EditorAdvanced

TemplateStandard

TemplateMissing

TemplateDuplicate

EditorStandard

[image: image20.emf]DBHandler

DBMS

FileSystem

Account

Authenticator

Recorder

Page

VDKSession

EditorStandard

PageRegular

Template

DataSet

ObjectFactory

PageReportStandard

When a Template Editor starts, it instantiates the template which then draws its state from the DBMS. The template then draws this state from the Template which forms the initial load of data to its interim data structure. The displayed form incorporates this data and each subsequent submittal refreshes the interim data structure from the REQUEST variables. When the Save command is submitted the interim data structure is again refreshed from the posted variables and the Template is again instantiated. The Template state is set by providing it an appropriately formatted data structure for it to read containing the interim data. The Template is then told to Save which it does to the DBMS. The action is logged via the VDKSession and the Recorder to the Log File.
The code for the Editors tries to break up the methods into four areas. Init functions that initialize the interim data structure for the first time for the initial display to the User. Restore functions that draw the data back out from the REQUEST variables back into the interim structure between page submit-re-display cycles. Display functions that create the HTML form for the User to interact with. Last, Save functions that store the changed object back to the DBMS.

6.2.10 DBHandler
The DBHandler was made with two main thoughts in mind. To create a single point of access to the DBMS so that a change of DBMS will require changes in this class only. Also, the DBHandler knows about the DBMS but does not need to know the details of the object fields. It should take in a request for a record from a table and return the record without having to understand the fields within.

6.2.11 Authentication
The authentication is through a simple user id and password combination. However this process is encapsulated in the Authenticator class in order to facilitate changes to the security scheme. The passwords are stored in the DBMS in a one-way encryption using PHP's crypt() function. There is no way to decrypt. Instead incoming passwords are encrypted and then compared.
6.2.12 IDMaker
IDMaker creates a session key. It is guaranteed to be unique as it is based on time and date.
6.2.13 Other Important Files
Constants.php: A file of Define statements that contains the constants used throughout the system. Places where only one class has to be aware of a value, such as Pages using variable names for the Forms they write to pass back data, may not use the defines as they are the only one using the term. Classes using a constant value, or name, that more than one class sees should have that constant declared here. Serialized defines provide a capability to convert data. The un-serialized define becomes an array that has key => value pairs that can convert one kind of value to another.

Vdkrit.css: This is the style sheet that the tables conform to. Changing the colors or look of the system can be facilitated by changes here.

php.ini: This is a PHP defined file name that can contain any settings defined in the PHP language to vary the behavior of the system. In example, the only setting in the file at present is the set command to suppress all errors. This suppresses error messages from the compiler and interpreter. This would not suppress error messages from MySQL but this was accomplished by functionality in the system. When development is being done on the system, this statement should be commented out.
6.2.14 MySQL database
The DBMS has two general kinds of tables. One is for the system and one is populated by the camera system with the results of a job. The cameras populate a top level table called jobs and the individual scan data is stored in the results table and referenced by its id and the job id.
The system tables are several and are divided by object. The system table is used for general system information and the others are specific to a kind of object. The data is retrieved by the DBHandler and passed to the object as part of instantiation or as part of a method. But it is the object itself that knows how to parse the data to restore its state as well as how to package the data to pass it to the DBHandler for storage. No intermediary classes need to understand the database schema. The exception to this are the editors that need to know how to get the object state, change it and pass it back to the object to save itself. Only the object sends information to the DBMS via the DBHandler which acts as a pass-thru and does not need to understand the data or structure.
The details of the tables are specified in Appendix 7.3.

6.3 Features Not Included
The only feature that was left out due to time constraints was the ability to import and export a Data Set to/from the system. The user interface has the appropriate controls and they are checked and the appropriate function is called but the functions called are only stubs.

6.4 Features Wished to be Included

The team wanted to incorporate a feature on the displayed report generated by PageReportStandard that would make the column headings actual buttons so a quick resort could be done based on the column clicked on. The first sort would be ascending and another click on the same column would make the sort descending.

An effort was made to make all shared constant values define statements in Constants.php. However time constraints may have left some out.
6.5 Deployment View

6.6 Original User Interface Prototype Pages

6.6.1 Login/Authentication

6.6.2 Logout

6.6.3 Data Sets

6.6.4 View Report

6.6.5 Templates

6.6.6 Template Editors
6.6.6.1 Standard Editor

6.6.6.2 Advanced

6.6.6.3 Combined

6.6.6.4 Sort Criteria

7. Appendix

7.1 Glossary
	Term
	Name
	Description

	DBMS
	Database Management System
	A programmable interface which provides a common layer of abstraction between a physical database and a user or external program

	HTML
	Hypertext Markup Language
	Set of markup symbols or codes intended for display on a World Wide Web browser page. The markup instructs a web browser on how to display words and images for a web page

	IVRS
	 InserterVision Report System
	System under development

	PHP
	PHP Hypertext Preprocessor
	An extensible scripting language, suited for web-based development. Typically embedded in HTML

	Login
	Login

	To supply the User ID and password for authentication and get access to the system

	Export Format
	=
	VDK-RIT defined format for the storage of Data Sets

	Job
	=
	All the pieces of mail read by the scanner done on a single sorting machine in a single session.

	Data Set
	=
	All the data from a job stored in the DBMS by the scanner interface.

	ID
	=
	Unique alpha-numeric string, beginning with an alpha

	password
	=
	Alpha-numeric string, beginning with an alpha and at least 6 characters long

	Sort
	=
	Re-display of displayed data in either ascending or descending order based on a Primary Key and an optional Secondary Key and an optional Tertiary Key

	Primary Key
	=
	A field chosen from the displayed options; This field will mandate the initial sort

	Secondary Key
	=
	A field chosen from the displayed options; This field will mandate the sort where the Primary Key is equal between data records

	Tertiary Key
	=
	A field chosen from the displayed options; This field will mandate the sort where the Primary Key is equal and the Secondary Key is equal between data records

	Template
	=
	A re-defined format of fields from a Data Set

	
	
	

	
	
	

7.2 Data Dictionary

7.3 MySQL Schema
System Table: system
	Field Name
	Type
	Description

	id_name
	varchar(32)
	unique identifier (primary key)

	data1
	text
	Data

	data2
	text
	Data

	id_name
	data1
	data2

	log
	comma separated log group identifiers
	not used

	version
	version of this system
	not used

User Accounts: accounts
	Field Name
	Type
	Description

	user_id
	varchar(64)
	unique identifier (primary key)

	password
	varchar(64)
	encrypted password

	user_name
	varchar(64)
	user's name

	access_level
	varchar(32)
	access level identifier

	permissions
	varchar(64)
	comma separated list of permission identifiers

	access_title
	varchar(64)
	displayable name for access level*

* This was meant to be removed and replaced by a conversion string in constants to translate the access identifier into the title.
Session Table: sessions
	Field Name
	Type
	Description

	id
	varchar(64)
	unique session id

	username
	varchar(64)
	user's id

	start_time
	datetime
	start of session

	last_updated
	datetime
	last action taken

	dataset_id
	varchar(64)
	comma separated list of data set ids or null

	template_id
	smallint(6)
	template id selected or null

	URL
	varchar(64)
	URL of client

	page_parameter
	varchar(64)
	optional parameter persistence between pages

	screen_width
	smallint(6)
	client's screen width reported by javascript

Returning contacts are authenticated by the combination of the session ID and the URL.

Template Table: templates
	Field Name
	Type
	Description

	id
	smallint(6)
	unique id (primary key)

	type
	varchar(64)
	type of Template identifier

	type_name
	varchar(64)
	name of template

	title
	varchar(64)
	report title

	description
	text
	description for list display

	number_columns
	tinyint(4)
	number of column objects

	number_filters
	tinyint(4)
	number of filter objects

	data1
	text
	used by combined for a comma separated list of template names

	data2
	varchar(64)
	used by combined as a comma separated list of template ids

	heading
	varchar(64)
	report heading

Column Table: data_columns
	Field Name
	Type
	Description

	template_id
	smallint(6)
	unique id of template this column is part of (key)

	field_name
	varchar(64)
	name of field in this column

	position
	smallint(6)
	position of this column 1..n (key)

	title
	varchar(64)
	report title for this column

	width
	smallint(6)
	report width of this column

The template_id and the position form the unique key.

Filter Table: filters
	Field Name
	Type
	Description

	id
	smallint(6)
	unique id given by template and unique only to that template (key)

	template_id
	smallint(6)
	template id for the template this filter is part of (key)

	type
	varchar(64)
	filter type identifier

	src
	varchar(64)
	field name to act on

	operator
	varchar(32)
	operator (EQUAL,GREATER_THAN,...)

	operand
	varchar(64)
	data to compare to field data

	sql
	text
	optional SQL statement (WHERE clause)

The id and template_id form the unique key.

Jobs Table: jobs
	Field Name
	Type
	Description

	id
	bigint(20)
	unique id for this job (one run on one machine) (primary key)

	machine
	varchar(64)
	machine identifier

	operator
	varchar(64)
	operator identifier

Results Table: results
	Field Name
	Type
	Description

	results_id
	bigint(20)
	unique id for the results (each mail piece) (key)

	job_id
	bigint(20)
	unique id for the job (key)

	date_time_stamp
	datetime
	date-time of scan

The results_id and job_id form the unique key.
7.4 Directory Structure

Top level IVRS system directory on the Server contains the all the php files, the style sheet file and the php.ini file:

	FilterSQL.php
	FilterSpecial.php
	DataSetRemote.php

	Template.php
	PageUnderConstruction.php
	PageHelp.php

	Authenticator.php
	PageLogout.php
	DataSetLocal.php

	TemplateCombined.php
	PageListTemplates.php
	MetaColumn.php

	DataSet.php
	PageRegular.php
	 ObjectFactory.php

	FilterDuplicates.php
	TemplateAdvanced.php
	 IdMaker.php

	DBHandler.php
	Page.php
	 SortKey.php

	Visitor.php
	VDKSession.php
	PageLogin.php

	PageListDataSets.php
	PageReportStandard.php
	FilterSpecialCount.php

	FilterStandard.
	Filter.php
	SortCriteria.php

	 IVRS.php
	EditorCombined.php
	Recorder.php

	FilterSpecialSum.php
	PageReportPrinterFriendly.php
	EditorAdvanced.php

	Comparator.php
	EditorStandard.php
	PageAdminViewLog.php

	FilterSpecialAverage.php
	TemplateMissing.php
	PageSystemUnavailable.php

	TemplateStandard.php
	EditorMissing.php
	EditorReportHeader.php

	PageAdmin.php
	TemplateDuplicate.php
	EditorUserAccount.php

	Account.php
	EditorDuplicate.php
	php.ini

	PageTableDisplay.php
	Constants.php
	vdkrit.css

The sub-directory Images contains the image files:

	disk.gif
	help.png
	templates.png

	admin.png
	logout.png
	trash.gif

	data sets.png
	printer friendly.png
	

The sub-directory Data contains information needed the stored Company Header:

	reportHeader.txt
	
	

	
	
	

The sub-directory Data contains information needed for the on-line help:

	HelpAdmin.txt
	HelpDuplicateEditor.txt
	HelpSetHeader.txt

	HelpAdvancedEditor.txt
	HelpMissingEditor.txt
	HelpStandardEditor.txt

	HelpCombinedEditor.txt
	HelpListTemplates.txt
	HelpUserEditor.txt

	HelpDataSet.txt
	HelpReport.txt
	

7.5 PHPDocs
Included with the package are the PHPDocs. This is a third party program that scanned the source code and created a series of linked web pages that incorporate all the classes, show the inheritance tree, the methods and attributes of each class and the comment headers. You start to use them by opening index.html in the top directory with your browser and navigate from there.

* One note if you decide to use the GNU licensed program and make changes: The comment block for the includes in each file is necessary even if there are no includes for this program, in order to parse the file correctly.
Formatted Data in Web Page

User Management

Sys Admin

Web Browser

Exported

Data

in Export

Format

Export Data Set(s)

File

System

Delete Data Set(s)

Request Data

 Data

Data Set(s)

InserterVision

Camera

System

Delete Data Set(s)

Manager Web Browser

Formatted Data in Web Page

Formatted Data in Web Page

Sort Data

Data Request

Login

DBMS

User Web Browser

User Web Browser

Report

System

<< state dependent>>

Session

Set Timeout

Create

Query Account Info

Get Permissions

<<entity>>

User Account

<<service>>

Requests

Display Data

Create Session

Authorization Request

Display

Commands

<< controller>>

<< external interface>>

Client

Interface

<< external interface>>

DBMS Interface

Timer

Controller

Set Timeout

Import/Export

Data Sets

Import/Delete

Data Sets

Create/Modify/

Delete

Give access to Sessions

<<service>>

Template

Editor

Create

Query Account Info

Get Permissions

<<entity>>

User Account

Set Keys

Get Keys

Query Data Set List

<<entity>>

Sort

Criteria

<<service>>

<<entity>>

<<entity>>

<<entity>>

<< service>>

<< state dependent>>

Session

Requests

Display Data

Display

Create Display

Create Session

Authorization Request

Display

Commands

<< controller>>

<< external interface>>

Client

Interface

<< external interface>>

<< external interface>>

Retrieve format

Retrieve data

Get Schema

DB Schema

DBMS Interface

Data Set

Template

Report

Generation

Timer

Controller

File System Interface

Create Data Set

Template

Editor

Set Timeout

Record Events

Log Events

<<service>>

Logger

Get

text

Import/Export

Data Sets

Import/Delete

Data Sets

Create/Modify/

Delete

Give access to Sessions

<<service>>

Create

Query Account Info

Get Permissions

<<entity>>

User Account

Set Keys

Get Keys

Query Data Set List

<<entity>>

Sort

Criteria

<<service>>

<<service>>

Help

<<entity>>

<<entity>>

<<entity>>

<< service>>

<< state dependent>>

Session

Requests

Display Data

Display

Create Display

Create Session

Authorization Request

Display

Commands

<< controller>>

<< external interface>>

Client

Interface

<< external interface>>

<< external interface>>

Retrieve format

Create Data Set

Retrieve data

Get Schema

Retrieve Help

DB Schema

DBMS Interface

Data Set

Template

Report

Generation

Timer

Controller

File System Interface

Editor

Recorder

Template

DBMS

Log File

User

Interim Data Structure

display Forms

submit

 Forms

log actions

log

Save

Save Template

get Initial Data

getTemplate Data

Save Template Data

save data

from posted vars

read data into form

