

Complimentary and Alternative Registry
Out By Five

Corey Batten Alex Howland Alexander Kozak Eric Thompson

Project Sponsor
Nathan Claes

Faculty Coach
Dr. Stephanie Ludi

Project Overview

The US Department of Veterans Affairs currently offers many forms of treatments and
care for veterans. It has been found that there may be merit to other, less orthodox, treatments
such as acupuncture, yoga, or meditation. These are known as Complementary or Alternative
Medicines. Veteran's Affairs currently makes some of these treatments available to complement
other medicines or in place of ineffective medicines. They, however, do not currently track these
treatments, what they are used to treat, or their efficacy. As the next step into the use of these and
similar treatments, Veterans Affairs is in need of a system with which these treatments and their
outcomes may be easily tracked.

This project seeks to provide the next step. The goal of this project was to create a
registry system that would allow for these treatments to be tracked quickly and easily by medical
providers and allow for analysts to perform various analyses of the data. Medical providers may
vary greatly in technical experience, from no experience to proficient. Analysts are expected to
be much more experienced. As a result, the primary goal of this system is to ensure that Medical
Providers are given the simplest and fastest forms of entry. The system will be determined
successful if it provides a highly usable interface for medical providers, stores all necessary and
appropriate information regarding treatments, patients, and outcomes, and meets the system
constraints imposed by Veterans Affairs.

Basic Requirements

The CAM registry has a number of high-level functional requirements. First, users must
authenticate to access the system, to preserve patient information confidentiality. To facilitate
this, administrators must be able to create users in the system. Secondly, users designated as
medical providers should be able to create patients in the system, and add, edit, and update their
statuses as well as track patient progress. These statuses will often be tied to CAM treatments.

1

Thirdly, program analyst users must be able to retrieve data from the system to run statistical
analyses to determine the effectiveness of specific CAM treatments for various disorders.
Administrators and program analysts must be able to change the types of data collected about
patients by medical providers, so that they can experiment with different data sets that may or
may not be later determined to correlate with CAM treatment success.

Program analysts and system administrators can be assumed to have varying levels of
technical expertise, leaning strongly towards the more technical. Medical providers, however, are
expected to have little technical knowledge and little time to learn it. Therefore, the system must
be quick and easy to use and simple to master.

Constraints

As specified by the project sponsor, the application must be web-based using ASP.NET
and Microsoft SQL Server 2008. The system must also comply with a number of government
regulations:

- 128-bit AES encryption of data

- HIPAA medical privacy

- Section 508 Government Accessability requirements

Additionally, our project must be completed within two academic quarters
(approximately 6 months) at RIT, while all team members are likely attending 2-3 other classes
and may have jobs.

Development Process

The team used an incremental waterfall process for the development. The system was
broken into multiple increments of requirements to be implemented. We then estimated how long
the increments would take and followed a waterfall development process for each increment.
This process was accepted by the sponsor, but was not mandated. Our process worked well with
communications with the sponsor, allowing regular progress updates through the process and
a free flow of ideas between developers and the sponsor. The important roles were determined
to be project manager, risk manager, planning and tracking lead, sponsor contact, requirements
lead, and design lead. These were divided up amongst the team members based on willingness
and expertise.

2

Project Schedule: Planned and Actual

In order to develop the project schedule, we created a Work Breakdown Structure. We
broke each task into the smallest logical chunks, and individually estimated the time necessary to
complete each one. In order to aggregate and analyze this data, we utilized Microsoft Project.
Our schedule was broken into a planning phase, spanning 25 days, and three iterations. The first
iteration consisted of all the basic registry infrastructure, and was projected to take 12 days. The
second iteration involved dynamic extension of the inputted data, and was also predicted to take
12 days. The third iteration consisted of the entire statistical analysis system, and was the
longest, at 51 days.

The actual schedule ended up being very different. The first increment ended up taking a
much greater amount of time than we had expected, primarily due to unfamiliarity with the
technologies involved in development. Additionally, the requirements that the estimation was
based on turned out to be far from the actual requirements of the sponsor. This discovery was not
made until late in the process, when significant work had already been completed. More
discussion of these problems can be found in the section titled “Project Reflection”.

Due to these unforeseen issues and our failure to properly plan for them, we only
completed work that, with the change in requirements, can be compared to our first and second
increments. We were forced to renegotiate the project scope with our sponsor, who luckily was
very accommodating. Once this occurred, we were able to produce a finished product, albeit at
the last minute.

System Design

Given our technologies, the basic application design structure was decided for us. At
the absolute highest level, we have a client, a server, and a database. On the client end, we’re
using HTML, CSS, and Javascript. HTML defines the page structure, CSS defines the styling
of the page, and Javascript controls page interactions that don’t require a page refresh. On the
server side, we’re using C# built on the ASP.NET MVC3 framework. Server side code interacts
with the database to pull necessary information. It then takes that information, processes it, and
embeds it into the HTML.

3

We chose the MVC3 framework for a number of reasons. First, the MVC framework
provided a well-defined code structure. Since we were going to be handing this project off at
the end of fall quarter, we needed a way to ensure that the code was clear, maintainable, and
extensible. The MVC framework allowed for this. By separating the application into models,
views, and controllers, it made separating the concerns a lot easier. Any alternative would
potentially lead to sloppy, transaction script code.

The second reason we chose the ASP.NET MVC3 framework was for the sake of easing
development. ASP.NET has a number of built in user functions that proved helpful in terms of
development. Why build an authentication script when there’s already one built in? By default,
when designing an ASP.NET web application, ASP.NET gives code for user registration, login,
logout, and password changes. Obviously, we had to tweak these to suit our design (both in
terms of structural and visual design), but it was still a lot less work than it would be to code
all of that from scratch. Additionally, ASP.NET had built-in functionality for handling user
roles. With our administrator, medical provider, analyst user structure, having built-in role
functionality was extremely useful and reduced the number of custom database queries made.

The final reason was for ease of deployment. ASP.NET MVC’s Entity Framework allows
Visual Studio to create the database from scratch. Using the connection string specified in the
web configuration file and the model object structure, Visual Studio will populate the database
tables for you. Additionally, any time a change is made to the model structure, the database will
be updated to reflect that change in the model.

4

So, with ASP.NET MVC3, not only was our architecture decided for us at the very
highest level, but the MVC design pattern was also selected for us. With this pattern, we
essentially have three different layers. The first is the presentation layer, which handles how
information is presented to the user. The second is the domain layer. This is where any domain
logic or processing occur. The final layer is the data source layer. This layer is where persisted
information is stored.

An HTTP request is made by the client. The server passes the request to the appropriate
controller. The controller then decides which model it should be using. Once the model is
requested, it accesses the necessary information from the database, which is passed back to the
controller. The controller takes that model and passes it to the appropriate view. The view uses
the model to inject information into an HTML template. The resulting HTML is returned to the
client, where the HTML is rendered and the Javascript is executed. Additionally, the controller
and view both have access to the ASP.NET user libraries, which pull user data from tables in the
database constructed by Visual Studio.

Diving down to an even deeper level, we have our model object structure. This structure
is directly related to the database thanks to MVC and Entity Framework. Our major entities are

5

UserProfile, MedicalProvider, Patient, Condition, PatientCondition, PatientUpdate,
QuestionAnswer, Treatment, ConditionTreatment, Test, TreatmentOutcome, TestQuestion, and
AnswerChoice.

At the very top is the UserProfile. A MedicalProvider can be connected with a User
Profile. Alternatively, Analysts or Administrators can also be associated with UserProfiles, but
because Analysts and Administrators don’t currently store any unique data that the UserProfile
doesn’t, there isn’t much of a point. On the other hand, MedicalProviders do store unique data
regarding the Provider’s facility and location. A Patient has a primary MedicalProvider. Patients
also have PatientConditions and PatientUpdates. PatientConditions reflect a stored Condition
in the system, put there by Administrators. Patient Conditions can have PatientUpdates and
ConditionTreatments. ConditionTreatments reflect a stored Treatment, also put in the system
by Administrators. ConditionTreatments can have PatientUpdates and TreatmentOutcomes
associated with them.

PatientUpdates require a Patient to be associated with it. Optionally, it can be associated
with PatientConditions or ConditionTreatments. These associations determine the update’s
position on the patient profile page. PatientUpdates can have any number of Tests associate with
them. Like Conditions and Treatments, Tests are added to the system by Administrators. This

6

connection between Tests and PatientUpdates is a many-to-many connection. To accommodate
this many-to-many relationship, an UpdateTest table is used, storing the PatientUpdateId and the
TestId. PatientUpdates are packaged in a PatientUpdateViewModel with a list of
QuestionAnswers. Each QuestionAnswers applies to a specific question in a specific
PatientUpdate.

Process and Product Metrics

Our team was set to track hours spent in meetings, time spent on requirements vs
estimated, hours spent per week, number of complete requirements, open defects, and lifetime
of defects. Defect related metrics were not tracked due to a lack of definitive defect tracking and
quality assurance. Hours spent in meetings became a somewhat less useful metric, as meeting
times were generally very consistent, providing little insight into our success.

Time spent per week and on requirements faced a significant challenge. The metric
tracking methods were not well streamlined in the process, and as a result became very
inconsistently tracked. The team frequently failed to keep the document up to date, due to vague
requirements recorded in the task list, a lack of streamlining of the process to ensure that metrics
were easily and regularly recorded, and possibly other reasons. This may signify potential
failings for our process or tracking methods, however provided little insight in the development
of the project itself.

Product State at Time of Delivery

Initially, we broke the project up into two parts. The first part was the basic input
functionality. The second part was the analytics portion. The input functionality would allow
users to add things into the system, while the analytics portion would allow them to observe
trends regarding the data stored. We planned to complete the input functionality by the end of
summer quarter and the analytics functionality during the fall. However, due to a number of
issues discussed in the next section, we fell behind during the summer quarter. We tried to catch
back up in the fall, but after being so far behind and receiving a sudden, major requirements
change, we lost all hope of completing the analysts portion in time.

The input potion of the application is complete (ignoring analytics input). Administrators
have CRUD (Create, Read, Update, and Delete) operations for users, conditions, treatments,
and tests. A medical provider is able to access their profile and make changes. They can also
view a patient’s profile. From a patient’s profile, they can add conditions, treatments, treatment
outcomes, and patient updates.

7

Administrators can currently add analysts to the system. Analysts are also able to log in,
view, and edit their profile. Unfortunately, without any of the analytics functionality, that’s about
all they can do. There were also a number of user interface changes that we considered making
that didn’t get completed before the code freeze including the idea of replacing a number of the
select boxes with autocompleting text fields. There was no extra functionality. We lacked the
time to complete the original requirements, let alone extra, undiscussed functionality.

Project Reflection

As a learning experience, this project was an enormous success. Every member of our
team has expressed the feeling that we have a much greater understanding of what working on an
actual project will be like.

At the beginning of the project, we did a great deal of process and planning. As we

had been taught in many SE classes before, we completed a formal requirements document,
architecture document, and project plan. However, this is where it started to go wrong. In all of
our prior experiences, we either had fairly complete requirements defined, or we were able to
elicit them easily. In this case, however, the requirements were significantly more nuanced, and
the initial document we received from the sponsor did not detail them enough. In this case, the
burden falls upon us to meet with the sponsor and determine exactly what the software needs to
do. Unfortunately, we were all fairly new to actual proper requirements elicitation, and we did
not do a good enough job. What happened was we ran with some assumptions about how the
system needed to operate, which caused some significant redesigns and time delays later on in
the project.

Additional problems surfaced once we made the transition to coding. We quickly found

out that our collective lack of experience with the technologies involved (ASP.net, Visual
Studio, Git, C#) would be a greater problem than we had anticipated. We ended up having to
take a great deal of additional time to familiarize ourselves and learn how to use the required
tools. This negatively impacted our schedule yet again.

Throughout these problems, our sponsor was very understanding and helpful. We had to
renegotiate the project scope more than once, and Nathan helped us find a compromise that
hopefully works for both parties. Our team leaves this project with a number of new skills, and a
greater understanding of the software engineering process, and we will be hopefully better
equipped to deal with these problems when we encounter them again.

8

