HARRIS CORPORATION
ENGINEERING NOTEBOOK

Date:
23 Jan, 2003 (v1.0)

Author: C. Linn

Project: RIT Sr. Project material

Subject: Understanding Port connections in the SAD

Although at first the SAD “connections” element seems straightforward enough, on closer examination it is not obvious on how the XML elements are used. This paper first addresses how the items are actually used by the ApplicationFactory, and then based on that understanding relates it to how the graphical representation on the JVMS maps to this XML.

How the elements are used by an ApplicaitonFactory

Connection of Resources to Resources (normal port connections) – connection between resources is easiest – all instances are known to the SAD, and the componentinstantiationref is employed. I think the same approach is used if the resource is constructed using a ResourceFactory.

Connection of Resources to Resources (where the target Resource does not provide a “providesport”, but rather inherits from this interface, i.e. “supportsinterface”: In this case the target port has no name – the ApplicaitonFactory merely takes the object reference to the object itself and uses it for the port connection. In this case, the componentsuppportedinterface is used, with the interface type referenced (since a component can inherit, i.e. support, multiple interfaces, and a componentinstantiationref or (if anot a Resource) findby. For the JVMS we will either totally ignore this of just support the non-findby version.

Connection of Resources to Non-SCA components – not applicable, as non-SCA components do not support ports

Connection of Resources to Logs, FileManagers and eventchannels – This is always a directed relationship, i.e. Logs always have the providesport. For this reason, the “outer” connectsinterface:findby is used – you never actually have a connectsinterface:providesport. This findby then specifies the logger (by name) using the domainfinder…log element, with the name specified. Note that in the specific case of eventchannels, there will often be not preexisting component to be found – instead the ApplicationFactory will create one to spec prior to connection.

Connection of Resources to Devices (typical usesdevice relationship) – this is the trickiest of all. Unlike the JVMS we have been discussing, the SAD file has no a-priori knowledge of the existence / identify of any device instances. The only method for connection to devices is as follows:

· Let’s assume that Resource R has two outports – ModemCtrl and GpsCtrl. Let us also assume that there are two devices somewhere in the system, ModemDevice and GpsDevice. Let us assume that each of these has a control “providesport”. To confuse matters more, let’s assume that although both ModemDevice and GpsDevice control ports support a different interface, they are both named “control in”.

· Since R cannot refer to instances of Devices directly, it must have two “usesdevices” dependencies listed in its SPD. These usesdevices must reference a propertyref (remember that each Device must have at least one allocationproperty specified – this is why…). For this example, let’s assume that ModemDevice defines an allocationproperty “HarrisModemDevice” and GpsDevice defines an allocationpropery “RaytheonGpsDevice”. R’s SPD would then list two usesdevice elements. The first would be dependent on “some device” that was a “RockwellGpsDevice”, and would give this relationship an ID # (here we will say GpsDevId). The second would be dependent on “some other device” that was a “ModemDevice”, and this usesdevice relationship would be tagged “ModemDevId”.

· Now we can specify the connections. The usesports is straightforward – simple componentinstantiationref for the R. The provides side is a bit strange, however. Here a providesport..deviceusedbythiscomponentref is used as follows: the refid is specifies the refid for R, which is the “component which uses…”. For the connection to the ModemDevice, the usesrefid would be set to “ModemDevId”, and for the connection to the GpsDevice “GpsDevId” would be employed.

Connection of Resources to Devices (where the device being connected happens to be the device that deploys the Resource in question): First, what does this mean? Each resource is “deployed” on a Device, i.e. must be either loaded or executed on a “processorDevice” somewhere. Which device is determined by evaluation of a number of dependencies such as processor, OS type and other softwaredependencies – typically listed in the SPD implementation section. In certain cases, the component so depoloyed needs a CORBA port connection to whatever Device it was deployed on. In this case, the Device, in addition to being either a LoadableDevice or an ExecutableDevice may also support other provides (or uses) ports. To navigate to these ports the devicethatloadedthiscomponentref is used, where the component refid of the “deployed” component is provided. Since a component can only be deployed by one device, there is no need for a second tage like deviceusedbythsicomponentref used. The JVMS does not have to support this relationship.

What are all of the other potential combinations used for: well, many combos do not make sense or we are not going to concern ourselves with them. Here are some examples:

· Use of the “inner” findbys: for our purposes you would only findby to components that provide the port (logs, FileSystems), and these would tend to use the “outer” findby in connectsinterface. The usesport…findby would be used if a component Log, FileSystem, DomainManager, DeviceManager had a USESport that need to be connected. We may or may not support these connections in the JVMS. As best I can tell there is not use for the inner findby in providesport section – the SCA talks abou non CF Resource types, but no extant core frameworks use this XML element anyways.

· findby namingservice – this would be used to locate a component that for some reason had to be found by the namingservice, and was not known in either the SAD or by the DomainManager. Although I can envision some theoretical cases where this could be used, we will not worry about it for the JVMS.

What does this mean to the JVMS?

The main realization we need to make is the the JVMS potentially has more information available to it that the core framework itself has at times. For example, normally the writer of the SAD has no knowledge of what the instantiationreferences of the Devices and other DCD created components are. As a result, an indirect (though technically more general) method must be used to specify connections to such devices. Also, the JVMS will support a subset of the types of connections that are possible. Given this, here is what we have:

· Connection between resources – we can assume that all instances are shown, so this will be simple connectsinterface.

· Connection using componentsupportedinterface – this is optional – not hard to do, but graphically not obvious what is going on. Example – one CF::Resource controlling another through its inherent “CF::Propertyset interface”/

· Connection to Devices – First problem here is how to deal with multiple instances of the same class device – unless something special occurs, these cannot have unique allocationproperties, and hence cannot be uniquely identified in the system. Assume that there is only one instance of a Device for now, and allow a connection to be drawn between ports. This connection will effectively create a usesdevice relationship (which must specify an allocationproperty) as well as a connection, which will use the deviceusedbythiscomponent to find it (note that connections of both directions must be supported). Some considerations here – since you can have multiple connections, but only one usesdevice tag, it is not unreasonable to expect the user to draw this dependency (specifying on what allocationproperty it is based).

· Connection to Log and FileSystem and EventChannel – must be supported

· Connection to namingservice – support not required. This has questions I don’t know the answers to, and also will go unused.

· Connection of DomainManager to anything – support not required

· Connection of DeviceManager to anything – support would be nice, but optional. More thought required here.

2
1 of 2

