
A Framework for a Rule-Based Form Validation Engine

Luis Blando
Operations Systems Lab.
GTE Laboratories, Inc.
40 Sylvan Road, MS-40

Waltham, MA 02454 USA
+1 781 466 3296
lblando@mit.edu

ABSTRACT

Automatic form validation enables telecommunication
carriers to process incoming service order requests more
effectively. Validation rules, however, can be nontrivial
to test and ultimately depend on the carrier’s internal
software systems. Traditionally, these validation checks
are spread throughout an application’s source code,
which makes maintaining and evolving the system a
very complex task. Our approach to solving this
problem involves decoupling the rules, giving them a
simple, easy-to-understand representation, and creating
an engine to apply these rules to incoming forms
automatically. This paper presents our approach in
detail, explains its parallelism and briefly presents the
differences with other common rule-based engines.

Keywords: Rule-Based systems, Form Validation.
Frameworks. Parallel Programming.

1 INTRODUCTION

The OMT/SIGS project at GTE Laboratories is aimed at
automating order processing. The orders are loosely
called Local Service Requests (LSRs) or Local Service
Orders (LSOs) [1] and may arrive into GTE’s Order
Centers via fax, or Electronic Data Interchange (EDI)
transmissions. Whenever an LSR is received, it has to
go through a series of validation checks to make sure it
complies with open market standards and GTE
validation1 rules. Traditionally, the know-how about
these checks is hard-coded in the application that does
the checking. This is usually done in the same
programming language as the application itself is written
in. This approach has the disadvantage of being highly

1 In the telecommunication carriers’ world, these
validation are sometimes referred as “edits”.
Consequently, This paper will use both terms
interchangeably.

inflexible to potential change in the edit rules, spreading
the ‘validation knowledge’ into many places (modules)
in an application and possibly replicating that
knowledge in many modules. Thus impedes a fast and
accurate system response when these rules change.

The LSR Edit Engine, or EE hereafter, has been
designed to address these problems. Its purpose is to
enable easy modification of the edit rules using a high
level language that end-users (i.e.. GTE business rule
experts) can manipulate directly.

2 TYPES OF VALIDATION CHECKS

In order to establish a common vocabulary, it is
important to define the kinds of edits the EE will handle.
The four different and loosely named kinds of errors the
EE will check for are:

1. "Meta" Checks/Errors: These checks are the first
that are performed on the request. They are
designed to ascertain that we have received all the
information (i.e. forms) required for a particular
request type and that no "prohibited" data has been
sent. Only after these checks have been validated
can the rest of them be started.

2. Syntactic Checks/Errors: These are performed at a
field level. Only the field data is necessary to
perform this check. For instance: "Only numeric
values allowed" or "First byte must be a zero"
would be examples of syntactic checks/errors.

3. Semantic Checks/Errors: The semantic checks
involve field dependencies. The differentiating
factor is basically the inability to perform the check
with just the field data (i.e.. more fields are needed).
For instance: "if Field1 = A then Field2 must be
present" or "if ACT = 2 then REFNUM should be
one of 1,2, or 3" would qualify as semantic checks.

4. Domain Checks/Errors: Domain Checks involve

2

pieces of information that can not be derived from
the document being validated alone. They are a
proper superset of the semantic checks. For
instance, "check that the value of the CCNA field
represents a valid GTE Customer" or "Validate the
BILL_STATE field against GTE's State Table" are
examples of domain checks.

The bulk of the edits are standard, based on a particular
version, called “issue” in the industry, of the LSOG [1]
document. Other edits are company-specific and are
present to support specific inter-company agreements
with regards to the format of electronic orders. The EE
is designed to support more that one issue of the LSOG
document at a time. The EE assumes there is a superset
document that encompasses both the LSOG specs plus
any GTE-defined edits). The EE can accommodate
multiple versions of these documents simultaneously.

3 LOGICAL FLOW OF A VALIDATION

For this discussion, we will assume a strictly sequential
thread of control. It will be expanded later to parallelize
many of the checks. We will also assume, as is indeed
the case, that the incoming request is already stored in a
common data store for retrieval.

The following sequence of steps needs to be taken to
validate any given request:

1. The LSO type (request type) needs to be determined
first, so that we can tell what are the components
(forms) that are required, prohibited, or optional. As
hinted in the previous paragraphs, a couple of fields
in the LSR form act as metadata for the request
itself. The two fields are: "request type"
(lsr.reqtyp) and "activity code" (lsr.act). A
given combination of lsr.reqtyp/lsr.act
uniquely determines the LSO type. If the
combination found is not valid, an exception is
immediately raised and processing stops.

2. Once the LSO type has been validated, a set of
special rules is searched to find the one that applies
to this particular request type. These rules are called
"metarules" and they determine two items:

(a) The forms that are required, prohibited, or
optional. The validation engine thus needs to
make sure that the "required" forms are indeed
present in the request, the "prohibited" are not,
etc. Should this condition not be met, an
exception is raised and processing stops.

(b) Once we have determined that this is a valid
LSO type and is a "complete" request, the meta

checks phase is complete and we are ready to
check each of the forms. Each metarule thus
contains a list of sets of rules that need to be
validated. These "lists of rules" are called
rulesets and there's usually one ruleset per form
(though this restriction is for convenience
only).

3. At this stage, we have already finished the meta
checks phase and we have identified a set of
rulesets that need to be checked. Thus a big loop
begins. For each ruleset, the following sequence
takes place:

(a) Check each and every rule in this ruleset. If the
rule checks out OK, do nothing. If it fails,
collect its error code.

(b) Regardless of whether the previous rule failed
or not, go to the next one until you exhaust this
ruleset.

(c) Once all the rulesets have been checked, collect
all the error codes found and report them.

One very important point to note is that, while checks
(1) and (2a) are "halting" checks, in the sense that their
failure signals the end of processing for this particular
request, the rest are non-fatal checks that allow
processing to continue and, furthermore, they must all
be carried out. This rationale follows logically from two
business requirements:

(a) Do not attempt to validate an incomplete or
malformed request.

(b) Check all the rules on a well-formed request, so
that we find everything that's wrong at once.

4 THE EDIT ENGINE LANGUAGE (EEL)

In order to construct the validation rules we designed a
very simple high level language so that it can be used
directly by the business analyst that is creating or
modifying the rules. The EEL is tailored for doing field
validations. Instead of presenting here a full version of a
BNF grammar for it, the following shows an example of
an actual validation file.

 issue "1" 1 {
 meta {
 E01METH00101:
 if (in(lsr.reqtyp,"EB","MB") and
 in(lsr.act,"N","T","V"))
 then (required(lsr) and required(eu) and
 required(rsl) and prohibited(lp) and
 prohibited(port) and prohibited(inp) and
 prohibited(lpnp) and required(dsr))
 do (cross_form_set, lsr_set, eu_set,

3

 rsl_set, dsr_set, dl_set);
 }
 // -----------------CROSS_FORM SET
 set cross_form_set {
 E01METH00001:
 if (in(lsr.reqtyp,"EB","MB") and
 in(lsr.act,"N","T","V","A"))
 then ((lsr.pon == eu.pon) and
 (lsr.pon == rsl.pon) and
 (lsr.pon == dsr.pon));
 E01METH00002:
 if (in(lsr.reqtyp,"EB","MB") and
 in(lsr.act,"C","M","R","B","D","S"))
 then ((lsr.pon == eu.pon) and
 (lsr.pon == rsl.pon));
 }
 // ---------------------- LSR SET
 set lsr_set {
 p E01FLDH00003: if (notempty(lsr.ccna))
 then (externalvalidate(tbhit,lsr.ccna));
 E01FLDH00012: always (required(lsr.sc));
 E01FLDH00013: if (notempty(lsr.sc[1..2]))
 then (lsr.sc[1..2] == "GT");
 E01FLDH00014:always(required(lsr.dtsent));
 E01FLDH00015:
 if (notempty(lsr.dtsent[1..8]))
 then (isdate(lsr.dtsent[1..8]));
 E01FLDH00016:
 if (notempty (lsr.dtsent[9..10]))
 then ((lsr.dtsent[9..10] >= "00") and
 (lsr.dtsent[9..10] <= "23"));
 }
 }

Each validation file contains one or more issue{...}
blocks. Each version of the LSOG document is fully-
specified inside an this block. For each issue, first a
meta{...} set is presented and then a number of
rulesets (set foo{...}) are described. Within a set, a
number of rules are described. A rule contains the
following:

! An optional tag to denote this rule is spawnable on
its own [p]

! The rule name (this will be transformed to a class
name later) followed by a ':'

! A command (either if (expr) then (expr), or
always (expr))

! In the case of metarules, a do(<set_list>)

Metarules differ from simple rules only in that they
contain a do(<ruleset_list>) statement at the
end. Furthermore, metarules are always "if"
commands.

Expressions can have a number of representations.
There are several 'basic functions', such as in(...),
notin(...), length(...), required(...),
isdate(...), istime(...), etc, that make rule-
writing simple. Data elements (i.e. form fields) are

represented by a qualified pathname with the pattern:
form[.form][.field]. Parts of fields are extracted
using an index notation [a] or [a..b], where a is the
index of the first character and b the index of the last
character to be taken into account (starting from one).

The EEL file is then compiled into a number of C++
source files, which are themselves compiled and linked
in with the system. The compiler was designed and built
using a novel technique, called Adaptive Object
Oriented Programming, using Demeter/Java [5]. Details
about this are beyond the scope of this paper, but the
reader is encouraged to get more information from
http://www.ccs.neu.edu/home/lblando/misc/eelc.html.

5 EDIT ENGINE IMPLEMENTATION

This section presents an overview of the different live
objects in the system and their behavior when
processing a form. Figure 1 shows a runtime snapshot of
the EE framework. Note that this is not a standard object
graph (for one, it has inheritance links in it!)

First, the Controller/LSRController object is
responsible for the communication with the outside
system. The Controller part (at the framework level)
takes care of providing the behavior logic while the
LSRController subclass handles the specifics of the
communication mechanism selected (a proprietary
mechanism called TONICS IPC [7] in this case). The
Controller object contains an inbound queue, an
outbound queue, and an auxiliary queue for receiving
BESi responses. BESi stands for Back-End System
Interface, and attempts to encapsulate any third-party
system that we interface with to carry out a validation.

Notice that the existence of this last queue (besQ) at the
framework level is debatable. Our rationale was that, no
matter which 'instantiation' of the framework we are
dealing with, domain checks always need to
communicate with a backend system (and thus receive
the response). The connection between the rule object
and the Workflow Manager (WFM) cloud depicts one
problem with this design. The rule objects (generated
from the EEL source) need at some point to contact
back-end systems for domain checks. The sensible thing
would have been to rely in an abstract framework-level
interface for messaging or, better yet, standardize on a
distributed object architecture and thus remote-enable
the rule objects to send IIOP requests themselves.
However, our proprietary middleware selection forced
us into this design, since there’s basically only one entry
point for all messages to the process -the besQ-.

4

Therefore, we decided to somewhat pollute the
architecture by allowing the rule objects to directly use
the proprietary middleware layer while the response
comes back from the besQ. This is clearly a
compromise approach but it will enable us to move to a
true distributed objects architecture (ie. CORBA) in the
future, since the model that the Rule objects follow is
logically equivalent to that of a synchronous remote
invocation in CORBA (namely, send request, wait, and
automatically be awaken).

The Controller object (there's only one in the system)
maintains a table with "issue numbers" on one axis and
"checkers active" on the other. Or, there's a list of
Checker objects per issue. This table is used by the
Controller object to determine if it has a Checker
object available to handle an incoming request or if the
latter has to wait.

The relationship between requests and Checker objects
is very simple. Each request is given to an (appropriate)
Checker object and the object works on the request
until it finishes. Once the Checker object is done with a
request it puts the result back in the outbound queue and
signals the Controller. It relinquishes control to the
LSRController, which in turn gives the message
(after appropriate marshaling, of course) to TONICS
IPC to give back to the WFM.

The Checker, in turn, contains a number of RuleSet
objects. One of them is the "meta" RuleSet object.
Remember the meta checks need to be done first? Well,
the Checker object accomplishes exactly this using the
RuleSet object. In other words, it relinquishes control
to the meta RuleSet and waits until it is finished.

After one metarule validates and we get a list of rulesets
to work on, the Checker signals all these rulesets to
start working and these do so in parallel. Thus,
paralellism is first encountered at this point for any
given request. Note that this is the first place we could
(reasonably) have parallelism, since the semantics of
metachecks is strictly sequential and, furthermore,
ordered.

Each RuleSet object has been given the
"Validate()" order. All these objects have a list of
Rule objects. They go through the list, sequentially,
telling each rule object to validate itself and collecting
the errors in a bag if they fail. Once they reach the end
of the rules list, they signal so to the Checker and go
back to sleep until the next order comes along.

This simple minded scenario is disrupted by parallel
rules. Initial analysis resulted in the realization that the

biggest bottleneck in the system would come from the
IO delays in contacting and, more importantly, waiting
for the results of, the back end systems. Therefore, we
introduced another level of parallelism in our design,
that of "spawnable rules". As the name implies, an
spawnable rule is a rule that gets its own thread [4]. The
thread is created the moment the RuleSet comes across
a rule that returns true to the Spawn() invocation. At
that time a new thread is created and the rule is left
alone to do its work. Once the rule has finished the
thread dies. Notice that this is a departure from the EE
model of having the threads alive 'sleeping' until work
comes their way. We selected this on-demand approach
to reduce the complexity of the system, as well as the
total thread load on the operating system.

Given the above loop of control, it is imperative that the
RuleSet encounters the spawnable rules first in the set
so that it spawns them as soon as possible and then goes
on to work on the 'regular' rules. While it would be
relatively simple to have the RuleSet order the rules
according to their "spawnability", we have not
implemented that functionality yet. Therefore, we
request that spawnable rules be put first in the ruleset in
the EEL file. (This optimization can also be introduced
in the EEL to C++ mapping phase.)

The atomic check is performed by a Rule object. We
have one object per check. The EEL to C++ compiler
generates a class per edit that subclasses the Rule
abstract class. In other words, for each EEL rule, a new
class name is generated that subclasses Rule. Each
Rule object implements a handful of methods that
perform the required checks (notice that there are many
auxiliary methods found at the Rule framework class
that these subclasses use). The fact that we have one
class name per EEL edit rule does not mean that we will
have only one instance of that class. We might have
many, for example, when we have multiple Checker
objects that handle the same issue number. To clarify a
little bit, the following EEL rule:

R2: always in(lsr.a, "A", "B", "C");

mutates into the following class:

#include <rules.h>
class R2 : public Rule {
 public:
 R2();
 virtual bool Validate(Form*);
 private:
 static vector<string> invar_0;
};

The rules met001, met002, fld01, fld02, etc in Figure
1 are examples of these classes. The validation checks

5

are complicated because of the existence of "repeating
fields". Repeating fields are vectors of values of the
same kind. For example, the field rsl.sd.*.lna
means that the RSL (Resale) form contains a section
called SD (Section Details) that contains zero or more
LNA fields. The above field name references each and
every one of these lna fields. If we want to address a
specific row, we would say for instance
lsr.sd.#1.lna to denote the 2nd row (indices are
zero-based). Field "nesting" is supported to any level at
the EE layer. It is important to note that the semantics of
the validation process do not allow for any inter-row
checks (ie. "rsl.sd.#<i>.lna must be the same as
rsl.sd.#<i+1>.lna"). Furthermore, a rule that uses
the wildcard needs to hold true for all the rows in the
repeating field. Lastly, when two distinct repeating
fields are part of the same EEL rule, the number of rows
for both at each repeating level must be the same. To
recap, the rules are:

1. No variable inter-row validations allowed. Specific
checks (ie. the first row must be equal to the
second) are however permitted. The only values
allowed to denote an index within a repeating field
are either a *, meaning "do this check for each and
every one of the rows at this repeating level", or a
'#n', meaning "check the row number n", which
should be 0-based. Examples:

always in(rsl.sd.*.lna,"A","B","C"); Ok

always(rsl.sd.i.lna==rsl.sd.(i+1).lna); Error

always(rsl.sd.#0.lna==rsl.sd.#1.lna); Ok

2. No proper subsets of repeating fields can be
specified. In other words, either exactly one
instance (row) is specified (by using the #n

notation) or all the instances are (by using the *
notation). This means we cannot specify checks like
"the first five rows must be empty". Instead, we
have to say the same thing by enumerating all the
first five rows using the #n notation.

3. The number of instances (row) at each level of
nesting must be exactly the same if two distinct
fields are present in a rule. For instance, the rule

 always port.sd.*.fd.*.ftr==rsl.sd.*.fd.*.ftr;

implies that the number of port.sd sections must
be the same as the number of rsl.sd sections.
Furthermore, it means that, for each port/rsl.sd
section, the number of fd instances must be same
for both. Please note that the behavior is unspecified

if this condition is not met (it is inefficient to do
bounds-checking for every rule).

Last, but certainly not least, we have neglected to
specify the means by which each of these rule objects
access the data they need to validate. This is
accomplished by the Form/LSRForm object (api layer
and instantiation, respectively) which in turn delegate to
the LSO database object. The LSO database object is a
third-party product (as far as the EE is concerned) that
provides database independence. It features a rich API
that clients use to retrieve and store data.

6 PARALLELISM WITHIN THE EDIT ENGINE

This section will summarize the parallelism that is
present within this application. In all cases, please refer
to Figure 1.

Server Behavior:
The Controller/LSRController object behaves like
a standard server in a client/server situation, with thread-
pooling instead of thread-spawning. There are three
separate threads within that object that control the
message queues, the timer, and the response queues,
respectively. Synchronization primitives are needed
since all these three threads alter the state of the same
objects. There’s master/slave style synchronization
between the Controller and any given Checker
object.

“fork() paralellism”:
The Controller object contains many Checker

objects. Each Checker object runs in its own thread. As
soon as the Controller receives a request, it gives
control to the Checker object who does not return it
until it is done. Since there’s little or not synchronization
necessary between the Checker and the Controller
objects, and that each Checker works on an entire
request, we’ve termed this fork() parallelism because it
reminds us of the standard daemon/server situation
where a new process is fork()ed the moment a new
connection is received. Please bear in mind that our
situation is not exactly the same, as we do not spawn a
new thread for a Checker object, but rather the threads
are pre-allocated (and sleeping). It is at this level where
the switch from SMP to Dist. Memory should be made.
In other words, we could have each of these Checker
objects in a different computer (communicating through,
for example, CORBA). There’s barrier-style
synchronization between the Checker object and the
many RuleSet objects

6

RuleSet parallelism:
This level of parallelism was added to exploit multiple
processors on the same machine. It follows from the
semantics of the application that checks at the RuleSet
level are independent and thus can proceed in parallel.
Therefore, for the case when there’s only one request in
the queue we need to make sure we’re utilizing all the
processors and thus the need for this level of parallelism.
Again, all these threads are pre-allocated, dormant,
waiting for a signal to be waken up. There’s
master/slave-style synchronization between the
RuleSet and the (maybe) spawned Rule threads.

On-Demand parallelism:
At the last level of our hierarchy we have the Rule
objects. Since these rules are mostly CPU-bound and we
have more than likely already exhausted the number of
available processors with the threads used by the
RuleSet parallelism, it didn’t make sense to make each
Rule have its own thread. The overhead would be
enormous. However, there are certain rules for which we
must allocate a new thread. These rules take an
inordinate amount of time because they need to contact
other back-end systems and thus are IO-bound. For these
rules, we spawn a thread when we reach the rule. That
thread acts as a client to a server connection and
ultimately dies after returning the result to the RuleSet
thread that spawned it. There’s no synchronization (in
general) among sibling Rule objects. Bear in mind that
rules are performing mostly read-only operations and
thus they can proceed in parallel.

7 TYPIFICATION OF PARALLELISM

In this section, we explore two available alternatives for
parallel programming, and contrast their approaches
with that of the EE.

CILK
We first consider MIT’s Cilk. In their own words [3]:

Cilk is an algorithmic multithreaded language. The
philosophy behind Cilk is that a programmer should
concentrate on structuring his program to expose
parallelism and exploit locality, leaving the runtime
system with the responsibility of scheduling the
computation to run efficiently on a given platform. Thus,
the Cilk runtime system takes care of details like load
balancing, paging, and communication protocols. Unlike
other multithreaded languages, however, Cilk is
algorithmic in that the runtime system guarantees efficient
and predictable performance.

Cilk introduces the concept of DAG-consistency. Since
it works off a directed acyclic graph when scheduling
work among different threads. From our application, we

clearly fit in the class of problems they can handle. In
other words, we need not worry about memory
consistency issues (except in a few places, such as the
different threads within the Controller object. In
those, we could simply use synchronization primitives).
The first benefit of using the Cilk approach is
simplicity in the code itself. Even though we still need
many synchronization primitives, they are better
localized (ie. At the same ‘parallelism level’) and thus
will not be as hard to implement or as costly to execute.
Secondly, we have gained distributability by virtue of
using Cilk. That is to say, we can move to a distributed
memory parallel situation without changing a line of
code. Of course, the practical feasibility of such an
approach remains an unanswered question.

Last, but certainly not least, we’ve gained automatic
load balancing and true thread pooling. This is a benefit
that cannot be overlooked. Since each Cilk spawn()
doesn’t necessarily create a new thread, but rather works
off a base thread pool, we have true pooling. More
importantly, still, is the fact that Cilk’s work-stealing
algorithm is perfectly suited for this kind of application.

The case when we have a very long RuleSet coupled
with many small ones would be handled perfectly by
Cilk. While one of the processors is working on the tail
of the long RuleSet, the other CPUs will pick the heads
of the stack (i.e. a whole small RuleSet at a time) and
run with it. This in effect implies true load balancing and
true thread pooling.

TOP-C
TOP-C is a parallel programming language, based on C,
that follows the master/slave paradigm. In the words of
its author [2],

The system is based on two key concepts: tasks in the
context of a master/slave environment; and global, shared
environment with lazy updates. Task descriptions (inputs)
are generated on the master, and assigned to a slave. The
slave executes the task and returns the result to the master.
The master may update its own private data based on the
result, or it may update data on all processes. Such global
updates take place on each slave after the slave completes
its current task. A SPMD (Single Program Multiple Data)
style of programming is encouraged.

Following the master/slave programming paradigm,
there is one first-class process in TOP-C, and a bunch of
second-class ones. This type of processing is perfect for
writing simple communication servers, since you might
have the master be the main thread of control, that
listen()s on the socket and ‘spawns’ slaves once a
connection is established.

7

TOP-C is also very simple to use. It introduces only a
handful of primitives. The control of the flow is fixed.
The master uses get_task() to find out what the next
work item is, and it then calls do_task() in the servers.
The master then uses the get_task_result() to
retrieve responses. The update_environment() call is
used to make changes to the global state that is
replicated in all the servers. This is the only way the
programmer has to change the environment in order to
guarantee correct execution.

The TOP-C model seems not to fit our application
problem very well. We have several levels of parallelism
in the EE. Since TOP-C seems to have only two possible
levels, we are at a loss when we need to extend this
model. One possibility would be to have “nested tasks”,
in which each do_task() is actually a master to some
other set of sub slaves.

8 FUTURE WORK

There are a number of problems with the model
described in the previous sections. While the model does
offer a number of benefits, its implementation makes it
difficult to partition the system into pieces that can be
distributed. More strictly, the application can be easily
partitioned at the Checker level. However, the
synchronization code between the Controller and the
Checker(s) will need to be rewritten.

Another problem is that we are doing static load-
balancing among threads. In other words, since each
RuleSet has one thread, we are betting on the sets
begin of more or less equal size. However, if we have
one huge set and a number of smaller ones, we might
end up with many processors idling waiting for the large
set. A more dynamic method of load-balancing is
necessary. Doing true thread-pooling, where the work
each set needs to do is put into a common queue, and the
threads pick the work from there might be a good
alternative.

9 COMPARISON TO OTHER ALTERNATIVES

With the help of one of the providers of rule-engine
toolkits, we conducted an extensive study to evaluate the
feasibility of using a third-party rule engine, based in the
RETE [3] algorithm, instead of ours. We jointly
concluded that our problem domain does not fit the
target problems for which a RETE-based solution is
viable. Space considerations prevent us from extending
on this topic. However, you can find more information
at http://www.ccs.neu.edu/home/lblando/ilog.doc.

10 CONCLUSIONS

We have presented a novel approach to form validation
in detail. We have briefly considered alternative
approaches for parallel programming as well as using a
different algorithm to perform the validation. The EE
has been in operation for more than a year now with
excellent results. The framework has proven reusable
and adaptable, having been modified several times. This
papers aims at presenting our experiences in building a
successful real-world rule-based application.

11 ACKNOWLEDGEMENTS

I would like to thank Kevin Qian of GTE for his initial
encouragement to write this paper, Karl Lieberherr of
Northeastern University for his support with
Demeter/Java, and Christie Labomme of GTE for her
help in writing this paper. Finally, I would like to thank
Tony Confrey, Mohammad Azzam, and Shadman Zafar
of GTE for their support of the Edit Engine project.

12 REFERENCES

[1] Bellcore. LSOG Specification. Bellcore
Laboratories, 1996. http:www.bellcore.com

[2] Cooperman, G. TOP-C: A Task-Oriented
Parallel C Interface. 5-th International Symposium on
High Performance Distributed Computing (HPDC-5),
IEEE Press, 1996, pp. 141--150

[3] Forgy, Charles. Rete: A Fast Algorithm for the
Many Pattern/Many Object Pattern Match Problem,
Artificial Intelligence,19, pp 17-37, 1982

[4] Lewis, Bil, Berg, Daniel. Multithreaded
Programming with Pthreads. Sun Microsystems Press,
1996.

[5] Lieberherr, Karl. Adaptive Object-Oriented
Software: The Demeter Method with Propagation
Patterns. PWS Publishing Company, 1996.

[6] Randall, Keith. Cilk: Efficient Multithreaded
Computing. PhD Thesis. MIT Dept. of Electrical
Engineering and Computer Science, June 1998.

[7] Shukla, R., McCann, J. TOSS: TONICS for
Operation Support Systems: System Management Using
the World Wide Web and Intelligent Software Agents.
NOMS '98, Proceedings of the IEEE Network
Operations and Management Symposium, IEEE, New
York, NY, USA, 1998, Vol. 1, p. 100-109

8

Figure 1: EE
runtime snapshot

Notes:

• This picture is a mixture of an object diagram and a class diagram. It shows the
different runtime structures at work within the EE.

• The classes Controller, Form, and Rule are abstract template-method classes, used to
adapt the EE framework to the specific application. Thus, in this implementation the
classes LSRController, LSRForm, and {met001, met002…, fld01, fld02…} extend the
abstract classes.

• All the metXXX and fldXX classes are automatically generated from the high-level rule
specification by a custom-built compiler.

• The WFMGR process is in charge of executing the Domain Check rules. A Domain Check rule
communicates with the WFMGR process via TONICS IPC, a proprietary middleware protocol.

• The Form abstraction enables the framework to be adapted to other data sources. So far
it has been modified to retrieve the information via IIOP/CORBA. The LSRForm class in
the picture, however, acts as a proxy for getting the information from an Informix
database (LSO).

	ABSTRACT
	INTRODUCTION
	TYPES OF VALIDATION CHECKS
	LOGICAL FLOW OF A VALIDATION
	THE EDIT ENGINE LANGUAGE (EEL)
	EDIT ENGINE IMPLEMENTATION
	PARALLELISM WITHIN THE EDIT ENGINE
	Server Behavior:
	“fork() paralellism”:
	RuleSet parallelism:
	On-Demand parallelism:

	TYPIFICATION OF PARALLELISM
	CILK
	TOP-C

	FUTURE WORK
	COMPARISON TO OTHER ALTERNATIVES
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

