

A Multiple Rule Engine-Based Agent Control Architecture

Edward P. Katz
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-283 (R.1)
July 16th , 2002*

E-mail: ed_katz@hpl.hp.com

rule-based
agents, goal-
directed
processing,
multiple
rule engine-
based agents

This paper introduces a multiple rule engine agent architecture
intended for prototyping heterogeneous agents. It also briefly
describes how this same architecture might be used for concurrent
and hierarchical goal processing. The proposed framework has an
embedded main rule engine supporting goal processing as well as
providing high level decision and control for the agent. It also
possesses a mechanism for dynamically spawning rule engine-based
agent behaviours (using separate rule engines) to process subgoals,
and it maintains information/status communication channels
between the main rule engine and the rule-based agent behaviours.
The agent together with its agent behaviours are all realized in a
similar manner. Each embedded rule engine has the ability to
configure multiple agent behaviours either in parallel or
hierarchically. In addition, this approach allows the construction of
reuseable, rule-based agent capabilities that can easily be composed
and layered to achieve a specific, application-oriented composite
capability.

* Internal Accession Date Only Approved for External Publication
 Copyright IEEE A condensed version of this paper was presented at and published in the 6th IEEE International
Conference on Intelligent Engineering Systems, 26-28 May 2002, Opatija, Croatia

ABSTRACT
This paper introduces a multiple rule engine agent architecture
intended for prototyping heterogeneous agents. It also briefly
describes how this same architecture might be used for concurrent
and hierarchical goal processing. The proposed framework has an
embedded main rule engine supporting goal processing as well as
providing high level decision and control for the agent. It also pos-
sesses a mechanism for dynamically spawning rule engine-based
agent behaviours (using separate rule engines) to process subgoals,
and it maintains information/status communication channels
between the main rule engine and the rule-based agent behaviours.
The agent together with its agent behaviours are all realized in a
similar manner. Each embedded rule engine has the ability to con-
figure multiple agent behaviours either in parallel or hierarchically.
In addition, this approach allows the construction of reuseable,
rule-based agent capabilities that can easily be composed and lay-
ered to achieve a specific, application-oriented composite capabil-
ity.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence-
Coherence and coordination, Intelligent agents.

General Terms
Design.

Keywords
Rule-based agents, goal-directed processing, multiple rule engine-
based agents.

1. INTRODUCTION
A rule-based, agent control architecture provides several desirable
properties. Such an agent could have an embedded expert system
with a human expert's knowledge encoded in its rules to aid in the

high level decision making and control. But an intelligent agent
needs more capabilities than just the encoding of an expert’s
knowledge. It is important for an agent to also be able to process
composite goals (e.g. a goal tree hierarchy) in which parallel sub-
goals may be actively processed concurrently. It would be desir-
able for a rule-based agent architecture to be able to spawn
concurrent subgoal processing while at the same time maintaining
an agenda of concurrent active goals that the agent is pursuing.

This work is motivated by several problems. The first problem is
need to define an agent architecture in which a system consisting
of many heterogeneous agents can be quickly prototyped. Each
agent possesses its own specializations and capabilities which may
or may not be duplicated and can cooperate and negotiate in an
apparently intelligent manner. The second problem is the need to
easily represent concurrent goal-directed task processing such that
the agent can multitask goals on its agenda. Finally, there is the
implementation of goals that are themselves hierarchical goal trees
(where each node represents a subgoal realized by a goal-directed
task).

We introduce a multiple rule engine agent architecture intended for
prototyping heterogeneous agents and briefly describe how this
same architecture might be used for concurrent and hierarchical
goal processing. In addition, this approach allows the construction
of reuseable, rule-based agent capabilities in a modular fashion
such that they can easily be composed and layered to achieve a
specific, application-oriented composite capability. This is not lim-
ited to just simply coupling modules. Pre-existing modules can be
coupled and the composed capability may be tailored to the partic-
ular application. Another dimension of this approach is the ability
to layer capabilities in which successive layers provide more
sophisticated, rule-based capabilities and knowledge representa-
tion. While there have been previous rule-based agent systems
developed, the effort described here appears to go beyond the typi-
cal approach.

This paper’s organization consists of a brief description of the
problem being addressed (section 2), a model solution to address
the problem (section 3), a proposal for a multiple rule-engine
architecture with compositional behaviours as a candidate problem
solution based upon this model (sections 4 and 5), an overview of
how this architecture might be implemented in an existing agent
system (section 6), and a brief discussion of how this work differs
from related work (section 7).

A Multiple Rule Engine-Based Agent Control Architecture

Edward P. Katz
Software Technology Laboratory

Hewlett Packard Laboratories
Hewlett Packard Company

1501 Page Mill Road, M/S 1U-14
Palo Alto, California 94304 USA

650.857.8725
ed_katz@hpl.hp.com

2. PROBLEM
When initially developing new agent-based systems, there are
often specific needs which if they can be addressed will facilitate
the development effort. In particular, the problem here is to address
some of these specific development needs:

• Rapid agent prototyping. Foremost is ease of prototyping mul-
tiple, heterogeneous agents used to construct agent-based appli-
cations where each has its own specialization and capabilities.

• Behaviour reuse. Behaviour reuse is needed not only to facilitate
prototyping but also to allow modular construction of new com-
posite behaviours for the different agent instances.

• Goal directed-task processing. Goal-directed task processing
among multiple concurrent goals is essential for the particular
agent systems of interest to us. In this paper, the term goal is used
to mean a goal-directed task in which there is a goal is to be
achieved and there are already known methods for satisfying the
goal which may be hierarchical.

3. A MODEL FOR AGENT STRUCTURE
Our model integrates several distinct ideas:

• Agent Main behaviour. An agent performs actions using the
agent’s behaviours. The agent must have a persistent main behav-
iour.

• Agent personality. The agent’s main behaviour contains an
embedded rule-engine implementing the agent’s rule-based per-
sonality.

• Auxiliary behaviours. An agent may in addition have any num-
ber of application-oriented, auxiliary behaviours. These behav-
iours can be dynamically constructed, executed, and deleted as
needed.

• Auxiliary behaviour personality. Similar to the main behav-
iour’s personality is the auxiliary behaviour’s rule-based person-
ality. Each behaviour has its own separate, distinct rule-engine.

• Encapsulated behaviours. All behaviours run within the agent
and cannot be accessed nor influenced from the outside.

• Personality composition. Behaviour personalities may be com-
posed of simpler, reusable rule-based personalities. Composing
several personalities together with specific customization can
produce an individual agent’s composite personality (that may or
may not be unique) executing in its main behaviour. Likewise,
the agent’s auxiliary behaviours may also have similarly com-
posed personalities. In either case, a layered composition can
build up sophisticated composite action capabilities.

4. A RULE AGENT ARCHITECTURE
This model forms the basis of the RAgent (Rule Agent) architec-
ture which uses an embedded rule engine for an agent’s primary
control and decision making.

4.1 RAgent Shell
The RAgent architecture consists of an agent containing a persis-
tent main rule-based behaviour. All RAgent-type agents have this
shell. The only difference among them is the rule sets that they are
processing in their own rule engines. The main behaviour’s pur-
pose is two-fold. First, it accepts all incoming messages delivered
to the agent. An incoming message is asserted into the agent’s rule
engine knowledge base as an incoming message fact (i.e. a fact
whose content is the actual message). Second, this behaviour is the
main repository and execution engine where the agent’s primary
control, decision making, and knowledge base functions occur.

4.2 Embedded Rule Engine Personalities
Our approach uses the concept of a personality (a cluster of rules,
functions, data structures, and global variables) intended to pro-
vide a category of functional abilities. A personality may be
thought of as either a reusable application package or a layer in a
control hierarchy. In either case, it is a conceptual package imple-
menting some agent capability. In the layered approach (Figure 1),
each successive layer raises the aggregate behaviour capabilities to
higher sophistication. This may be accomplished in one or both of
two ways. First, a new personality may simply augment the agent's
currently accumulated extant personalities. The second way is by
adding a new personality layer which has one or more rules and
functions that simply name replace (supersede) lower layer person-
ality rules and functions. Layering allows agents of different
sophistication levels to be easily constructed from reusable, rule-
based capabilities of various personality packages. (The obvious
assumption made here is that no conflicts exist using this mix-and-
match approach. Care must be taken to avoid any unwanted or
undesirable conflicts.)

Whenever an RAgent is instantiated, it is automatically imbued
with a basic functional layer called the core personality. The core
contains the fundamental agent default capabilities which can be

Figure 1. RAgent Architecture

CORE Personality

Application Personality 1

RAgent

MAIN Behaviour

Rule Engine

AGENT DATA

Application Personality n

replaced or augmented by adding higher level application person-
ality layers. In the above example where an incoming message is
asserted into the rule engine fact base by the RAgent’s main behav-
iour, if there is no extant application personality rule whose ante-
cedent pattern matches the message fact (e.g. an unexpected
message type), then the unrecognized message fact is caught by a
default core rule, generating an appropriate graceful response.

4.3 RAgent Architecture Benefits
The RAgent architecture approach has several distinct advantages.
The ability to program (or reprogram) agents by constructing rules
brings the agent system developer a higher level of expressiveness
over conventional procedural programming languages. This facili-
tates building agent systems more quickly by reducing the edit-
compile-debug loop time. Re-using the same RAgent architecture
in which each instance shell is identical except for its own individ-
ual rule-base (and hence its own personality) allows more rapid
development of functionally heterogeneous agent systems. When
an RAgent is instantiated, a construction script argument is passed
describing how to build up the particular agent's composite person-
ality. This script specifies what extant personality modules to use,
the proper order, and any personality layering. Thus, creating sev-
eral different RAgent-type agents involves multiple RAgent
instantiations, each having a (not-necessarily unique) personality
determined by its own construction script argument.

Another benefit of using this RAgent approach is developmental
flexibility. The RAgent core personality is to be constructed to
accept special unique messages which can only be sent from the
developer. Suppose for example, the developer needs to “tweak”
some rules in a particular application personality of a particular
active RAgent instance. The editing can be done off-line while the
specific RAgent is still running. After the editing is complete, the
developer sends to the specific RAgent-type agent a special
reload personality message. Upon validating the message, the
RAgent’s core personality dynamically reloads the newly modified
application personality. Thus the RAgent instance dynamically
acquires a change in its functional capability while the agent sys-
tem and the particular agent are still running (and does not disturb
the rule engine fact base)

To illustrate this, suppose that three agents are used to play the
card game of blackjack. Two agents are regular blackjack players
while the third is the blackjack dealer (Figure 2). The two player
agents are given the same player personality. The third agent is
given the dealer personality which is a layered composition con-
taining the same player personality plus a dealer player personal-
ity on the next higher layer. Basically the dealer agent is a special
kind of player agent and can use some of the player personality
capabilities, though they may need to be enhanced and refined. For
example, the same basic blackjack game regulations for point
counting (e.g. not going over 21) applies to both player and dealer.
The dealer personality, however, has slightly different playing
rules such as the hit or hold on 17 rule based on particular style of
blackjack being played (e.g. Las Vegas vs. Reno rules) that the reg-
ular player does not have. Additionally, the dealer personality has
enhanced capabilities for dealing cards, collecting wagers, etc. that
the player personality does not have.

To illustrate prototyping flexibility, the blackjack agent game
developer while watching game play, may decide to modify the
dealer’s play by changing the dealer’s hit or hold on 17 rule. After
making the rule change offline in the dealer-player personality, the
developer sends the special reload personality message to the
dealer agent to reload its complete personality. Upon message vali-
dation, the dealer’s core personality immediately performs the
reload including the modifications and continues play with the new
dealer personality rules and functions.

5. RAgent++
As stated above, the RAgent architecture essentially describes an
agent shell in which the agent functionality is represented by a
knowledge base of rules, functions, and facts embedded in the
agent’s main behaviour rule engine. As demonstrated in the black-
jack program example, the RAgent architecture appears to be suffi-
cient for satisfying many of our needs.

We anticipate that concurrent, goal processing will be important
for agent-based systems such as personal assistants and meeting
agents [4] and thus, propose the RAgent++ architecture as a viable
implementation framework. This concept of a shell with its own
knowledge base (via an embedded rule engine) can be extended to
the notion of an agent application-based, auxiliary behaviour shell
(Figure 3). When the agent has multiple concurrent goals (each
may be hierarchical) that it is trying to satisfy, a variation of the
shell concept can be applied. In like manner to the RAgent shell, a
RAgent++ shell is a RAgent shell (and its associated main behav-
iour) capable of dynamically adding and deleting auxiliary behav-
iour shells.

Figure 2. Agent Blackjack Game
�� ��

��

CORE PersonalityCORE Personality

CORE Personality

BlackJackDealer

Blackjack Player Personality

MAIN Behaviour

AGENT DATA

Blackjack Player Personality

Rule Engine

Dealer Player Personality

BlackJackPlayer2

MAIN Behaviour

AGENT DATA

Rule Engine

Blackjack Player Personality

BlackJackPlayer1

MAIN Behaviour

AGENT DATA

Rule Engine

5.1 RAgent++ Behaviour Shell
The RAgent++ auxiliary behavior’s primary purpose is to contain
a separate, distinct rule-based environment for the subgoal’s task
processing. Secondarily, it is to take advantage of the host system’s
subtasking facilities, if available. Goal-directed processing can be
realized via spawning and executing a separate auxiliary behaviour
for each subgoal node in the goal tree. Another case is an agent’s
need for concurrent task processing where each concurrent task is
a separate auxiliary behaviour.

The RAgent++ auxiliary behaviour shell consists of a behaviour
instance together with its own embedded rule engine (completely
separate from that of the RAgent++ main behaviour). Just as the
RAgent++’s main rule engine has a possibly composite or layered
personality realized via rules, functions, and facts, each auxiliary
behaviour also has its own local personality including a special
auxiliary behaviour core personality analogous to the RAgent++
main core personality. The essential functionality of the auxiliary
behaviour core is to provide default behaviour and communica-
tions channels with the RAgent main rule engine, and other auxil-
iary behaviour rule engines. It is the case that the two rule engines
have a limited degree of direct communications. (For this last rea-
son, the RAgent++ main core personality is slightly more sophisti-
cated than the RAgent version.) Each rule engine can assert or
modify facts in the other’s fact base. This allows the particular
behaviour’s rule engine to directly exchange information with the
agent’s main rule engine’s fact base and with other behaviours’
rule engines directly. This special access (based on privileges)
directly into the other’s knowledge base facilitates the transmis-
sion of status and synchronization control information.

Figure 3. RAgent++ concurrent auxiliary behaviours.

CORE Personality

CORE Personality

CORE Personality

Cowan Deck

AGENT DATA

RAgent++

MAIN Behaviour
Rule Engine

Agent Personality

Rule Engine

Application Personality

Application Behaviour

Rule Engine

Application Behaviour

Application Personality

RAgent++ auxiliary behaviours have a similar instantiation pro-
cess to RAgent instantiation. Each time an RAgent++ auxiliary
behaviour class is instantiated, a construction script is given as a
parameter which describes how to construct that behaviour person-
ality.

With this auxiliary behaviour shell feature, the RAgent++ agent
can dynamically spawn one or more rule-based, concurrent auxil-
iary behaviours. For the case where a goal tree contains multi-
level, hierarchical subgoals, each subgoal at whatever level can be
represented by a separately spawned auxiliary behaviour. Each

Figure 4. Goal Tree.

Figure 5. Goal-directed RAgent++ example.

C

A

B

D

Cowan Deck

RE

Goal-directed Agent

MAIN Behaviour

AGENT DATA

Rule Engine

C

D

B

A

RE

RE RE

subgoal auxiliary behaviour has the responsibility to synchronize
with other subgoal behaviours above and below it in the goal tree
during processing. This can be especially useful for goal process-
ing having a multilevel goal tree where each tree subgoal node is
distinctly represented via a RAgent++ auxiliary behaviour.

Suppose the RAgent++ agent needs to achieve some goal A (figure
4) for which there already exists a task set (subgoals plus goal tree)
encoded in rule-based form. Subgoals B and C are conjunctive, but
are disjointedly independent and may be processed concurrently.
Two concurrent auxiliary behaviours (figure 5) may be spawned
for each subgoal processing. While C is executing, it spawns an
auxiliary behaviour to process its subgoal D

If the BlackJackPlayer1 agent in the blackjack example above is
reimplemented as a RAgent++ (Figure 6), it might be implemented
as having a subgoal auxiliary behaviour deciding whether to hit-
or-hold (accept another card from the dealer or stop). This subgoal
might itself use a subgoal behaviour to keep counts for each card
played that would affect game play probabilities. Likewise, if the
BlackJackPlayer2 agent is similarly implemented and has been
dealt two cards of identical rank from the BlackJackDealer agent,
then BlackJackPlayer2 may elect to play the split hand. A split
hand is actually two concurrent hands, each with one of the two
identically ranked cards (e.g. Jack of Diamonds and Jack of
Spades) and each hand with an additionally dealt card from the
BlackJackDealer. The splitting can easily be represented in the
agent via concurrent auxiliary behaviours (Figure 7)

Figure 6. RAgent++ BlackJackPlayer1

��

Personality

Card counting Behaviour

RE Card counting

Blackjack Player Personality

Cowan Deck

MAIN Behaviour

BlackJackPlayer1

Hit-or-hold
Personality

Hit-or-Hold Behaviour

RE

RE

AGENT DATA

5.2 RAgent++ Benefits
In addition to the RAgent benefits, the major advantage introduced
with RAgent++ is the ability to dynamically spawn rule-based
auxiliary behaviours. Each auxiliary behaviour core personality
knows how to exchange information and synchronize status
directly with the RAgent’s main rule engine and with the rule
engines of other auxiliary behaviours belonging to the same agent
instance. Each auxiliary behaviour can execute its own rule-based
application independently and concurrently of the other tasks. This
feature allows the agent to concurrently process goals representing
the multiple activities in which the agent is presently engaged.

The RAgent main behaviour’s rule engine could function as a pas-
sive communication medium such as a blackboard [13] where
each sub-behaviour can have read and update access. Each auxil-
iary behaviour can view the blackboard and establish daemon
rules to activate or spawn auxiliary behaviours as necessary. Also,
the blackboard may also be used to display each behaviour’s state
and any changes in status. Alternatively, the main behaviour could
act as an active overseeing controller requiring the sub-behaviours
to synchronize their processing, possibly in a lockstep manner.

6. PROTOTYPING IN JADE
The feasibility of both the RAgent and RAgent++ architectures is
being evaluated by prototyping in JADE [2]. It is a FIPA [5] com-
pliant software framework for developing agent applications of
inter-operable, intelligent, multi-agent systems. JADE is a kind of
agent platform middleware and development framework support-
ing distributed, interoperable multi-agents together with the corre-
sponding communications infrastructure including the FIPA Agent

Figure 7. BlackJackPlayer2 playing split hand.

����

Blackjack Player Personality

Cowan Deck

MAIN Behaviour

BlackJackPlayer2

RE

Hit-or-hold

Personality
RE

Hit-or-Hold-2 Behaviour

Hit-or-hold

Personality
RE

Hit-or-Hold-1 Behaviour

Card counting

Personality

Card counting-1 Behaviour

RE
Card counting

Personality

Card counting-2 Behaviour

RE

AGENT DATA

Communication Language (ACL) [6]. Each agent belongs to a par-
ticular JADE platform which has infrastructure components for
supporting multiple agents and ACL message passing. The plat-
form’s user GUI allows the user to see the platform agents and the
graphical depiction of message exchanges. The developer can use
the GUI to manually create an ACL message and send it to a par-
ticular agent (this feature will be used below).

6.1 RAgent Implementation in JADE
An agent in the JADE sense uses the JADE Agent abstraction and
models an agent's tasks via the JADE Behaviour abstraction where
each agent may dynamically instantiate its own behaviours as
needed. Multiple behaviours belonging to the agent may execute
concurrently using a round-robin, non-preemptive policy. The Java
language is used to implement the agent infrastructure and base
classes for agents and behaviours. However, there are no limita-
tions for the kinds of software systems which can be embedded in
the agents and behaviours.

In effect, a RAgent conceptually is an JADE Agent shell having an
embedded rule engine. This is achieved by implementing each
RAgent as a class extension of the JADE Agent class. A RAgent
agent is paired with a main rule-based behaviour implemented as
an instantiation of an extended JADE Behaviour class allowing a
Java-based, embedded rule engine [7]). At RAgent class instantia-
tion time in the JADE system, a parameter is passed to the class
constructor which serves as the RAgent personality constructor
script locator. The class constructor initializes the agent, instanti-
ates the main behaviour which includes starting an embedded rule-
engine, loading in the main core behaviour, and loading the agent
personality as indicated by the constructor script.

As stated in section 4.3, the RAgent core personality is constructed
to accept special unique ACL messages which can only be sent
from the developer using the JADE Remote Monitoring Agent
(RMA) user interface GUI. A developer can instruct a particular
RAgent instance to reload its personality by using the RMA GUI
to send a reload personality ACL message while the specific
agent in the JADE system is still running. Both the RAgent
instance and the JADE system continue to run while this personal-
ity update occurs.

Analogous to the RAgent implementation above, a RAgent++ is
implemented using the same process for the agent and main behav-
iour. Each auxiliary behaviour is an instantiation of an extended
JADE behaviour class having its own embedded rule engine. Dur-
ing the instantiation, the construction script parameter specifies the
application-based personality to be loaded into the rule engine’s
knowledge base.

6.2 JADE Behaviour Usage
Consistent with the JADE model of agents, an instantiated RAgent
(or RAgent++) agent may use one or more standard JADE behav-
iours written in Java. (This is to leverage reuse of previously writ-
ten, conventional JADE behaviours.) The RAgent and main
behaviour have the capability (just as regular JADE agents) to
dynamically spawn, control, and discard conventional JADE
behaviours. Both the RAgent and main behaviour classes allow

method access from the JADE behaviours to update the RAgent’s
knowledge base for process control and execution synchronization
and information exchange.

As of this writing, a simple proof-of-concept personal assistant-
based meeting arranger using this architectural framework is being
constructed for demonstration using JADE.

7. RELATED WORK
Rule-based agent construction has been used for some time in gen-
eral agent programming. Typical examples [10][9][3] involve a
rule-based system programmed to give the agent some narrow
“intelligent” appearing capabilities implemented in the form of
rules.

Another application [15] uses rules for the dynamic generation and
editing for specific kinds of agent programming, e.g. personal
agents programming by the user. Because of the expressive power
for problem description in a rule-based system, this can be used for
end-user programming of personal agents to express goals, habits,
and preferences. This does require a sophisticated system to vali-
date user input to resolve with the user any conflicts between the
user’s rule.

A rule-based approach can also be used as a method of agent
learning. If a rule-based agent could continually acquire new rules,
then conceivably it could expand its knowledge base and capabili-
ties over time. Machine learning processes that can generate new
rules allows rule-base agents to incrementally acquire knowledge
and programming from the environment and experiences [12][3].

Various other agent applications use rule-based subsystems such
as in agent conversation management [1], in reasoning tools for
intelligent applications such as control in virtual worlds [14], in
automated citation finding [11], and in business rules applications
[8] just to name a few.

These are token representatives for some rule-based agent applica-
tions which tend to use rules as a means of bringing some form of
intelligent processing to a particular application domain. This
author is unaware of any other similar work that uses the concept
of hierarchically layered, application-based personalities for agent
control. In addition, this author is unaware of any similar work
using the concept of multiple rule engines to implement concur-
rent agent behaviours. The effort described here goes beyond these
previous approaches.

8. CONCLUSIONS
The RAgent architecture uses personalities consisting of rules and
functions to create agent capabilities. Higher level composite per-
sonalities (layering) can be built up by first installing the lower
personality layers and then incrementally adding additional layers
to augment or replace the lower level rules and functions. Thus, a
particular RAgent instance can be customized to have the desired
decision/control sophistication using previously defined personali-
ties with a core personality providing a default base agent func-
tionality. Rapid prototyping is a major advantage of using the
RAgent shell that allows quick instantiation of multiple heteroge-

neous agents. This is accomplished via multiple RAgent-type
agent instantiations, each with its own construction script directing
the building of its personality composition and layering. An auxil-
iary benefit is the ability to reload personalities dynamically with-
out needing to restart the agent platform or agent instances thus
allowing dynamic functional redefinition for developmental
debugging purposes.

RAgent++ extends the RAgent capabilities by allowing the
dynamic spawning of agent auxiliary behaviours with their own
personalities which could interact with the RAgent++ main behav-
iour.

The major ideas presented include the rule-based construction of
an RAgent-type agent’s main behaviour, the similarly constructed
rule-based agent auxiliary behaviours, and the introduction of
reusable rule-based personalities. Each agent has an individual
agent personality (that may or may not be unique) in its main
behaviour. Likewise, the agent’s application-based auxiliary
behaviours have similar rule-based personalities. Both the main
and auxiliary personalities may be a layered composition building
up sophisticated capabilities

9. Acknowledgements
This investigation effort has benefitted greatly from discussions
with Reed Letsinger, Martin Griss, and Richard Cowan and edito-
rial assistance from Harumi Kuno.

10. References
[1] Barbuceanu, Mihai, Fox, Mark S. Integrating Communicative

Action, Conversations and Decision Theory to Coordinate
Agents. Proc. of the First Intl. Conf. on Autonomous Agents,
(Marina del Rey, February 1997), 49-58.

[2] Bellifemine, Fabio, Poggi, Agostino, and Rimassa, Giovanni.
JADE--A FIPA-Compliant Agent Framework. 4th Intl. Conf.
and Exhib. on The Practical Application of Intelligent Agents
and Multi-Agents(London, UK, April 1999), 97-108.

[3] Bigus, Joseph P. The Agent Building and Learning Environ-
ment. Proc. 4th Int'l Conf. on Autonomous Agents 2000
ACM Press, 108-109.

[4] Chen, Hsinchun, Houston, A., Nunamaker, J., and Yen, J.
Toward Intelligent Meeting Agents. Computer, IEEE Com-
put. Soc, vol.29, no.8, Aug. 1996, 62-70.

[5] Foundation for Intelligent Physical Agents (FIPA). http://
www.fipa.org.

[6] FIPA ACL Message Structure Specification. http://
www.fipa.org/repository/aclspecs.html

[7] Friedman-Hill, E.J. Jess, the Java Expert System Shell. San-
dia National Laboratories. http://herzberg.ca.sandia.gov/jess.

[8] Grosof, Benjamin N., Labrou, Yannis, Chan, Hoi Y. A
Declarative Approach to Business Rules in Contracts. Proc.
of the first ACM conference on Electronic commerce, (Den-
ver, Colorado, November 1999), 68-77.

[9] Grosof, Benjamin N., Levine, David W., Chan, Hoi Y., Parris
Colin J., and Auerbach Joshua S. Reusable Architecture for
Embedding Rule-based Intelligence in Information Agents.
Proc. of the Workshop on Intelligent Information Agents,
ACM Conf. on Information and Knowledge Management
(CIKM-95), Dec. 1995. (Also available as IBM Research
Report RC 20305 (Dec. 05, 1995).)

[10] Hindriks, K.V., de Boer, F.S., van der Hoek, W., and Meyer,
John-Jule C. Proc. 5th Intl. Workshop on Intelligent Agents V
Agent Theories, Architectures, and Languages (ATAL-98),
Springer-Verlag, 1999, 381-396.

[11] Loke, Seng Wai, Davison, Andrew, Sterling, Leon. CiFi: An
Intelligent Agent for Citation Finding on the World-Wide
Web. Proc. 4th Pacific Rim Intl. Conf. Artificial Intelligence
(PRICAI), Springer-Verlag, 1996, 580-591.

[12] Nonas, E. and Poulovassilis, A. Optimising Self Adaptive
Networks by Evolving Rule-Based Agents. Proc. Evolution-
ary Image Analysis, Signal Processing and Telecommunica-
tions. First Europe Workshops, EvoIASP'99 and
EuroEcTel'99, Springer-Verlag, May 1999, 203-14.

[13] Pang, Grantham K. H., Development of a blackboard system
for robot programming, Proc. of the Third Intl. Conf. on
Industrial and Engineering Applications of Artificial Intelli-
gence and Expert Systems, Vol. I, July 1990, 123-130.

[14] Schweiss, Elsa, Musse, Soraja Raupp, Garat, Fabien, Thal-
mann, Daniel, An Architecture to Guide Crowds Using a
Rule-Based Behavior System, Proc. of the Third Annual
Conf. on Autonomous Agents, ACM, April 1999, 334-335.

[15] Terveen, Loren G., Murray, La Tondra, Helping Users Pro-
gram Their Personal Agents, Conf. Proc. on Human Factors
in Computing Systems, ACM, April 1996, 355-361.

