Desigh Document

Co-op Evaluation System
Senior Project 2014-2015

Team Members:
Tyler Geery
Maddison Hickson
Casey Klimkowsky
Emma Nelson

Faculty Coach:
Samuel Malachowsky

Project Sponsors:
Jim Bondi (OCSCE)
Kim Sowers (ITS)

Table of Contents

Table of Contents
Revision History
1 Introduction

1.1 Purpose
1.2 Scope

1.3 Overview
System Overview
2.1 Purpose
2 System Context
2.3 User Roles
2.4 Design Constraints and Limitations
Data Design
3.1 Data Description
3.1.1 Users, Departments, Colleges, and Configurations
Relational Model
Context
Element Catalog
3.1.2 Email Notifications and Logs
Relational Model
Context
Element Catalog
3.1.3 Evaluations, Forms, and Questions
Relational Model
Context
Element Catalog
Component Design
41 Reporting Service
4.2 Authentication Service

N

N

N N
~

[[6V)

8

4.2.1 User
4.2.2 Privileges
4.2.3 EmployerAuthentication

4.2.4 Shibboleth
4.3 Form Service

4.3.1 FormCommand
4.3.2 AddForm

4.3.3 RemoveForm

4.3.4 QuestionCommand
4.3.5 AddQuestion

4.3.6 RemoveQuestion

4.3.7 UpdateQuestion

4.4 Email Service

4.41 Email Logging Service
4.4.2 Email Template Service
4.5 User Management Service
4.51 UserCommand
4.5.2 AddUser
4.5.3 RemoveUser
4.6 Evaluation Service
4.6.1 EvaluationCommand

4.6.2 AddEvaluation

4.6.3 UpdateEvaluationAnswers

4.6.4 UpdateEvaluationStatus

4.7 File Import Service
4.8 School Service
4.8.1 SchoolCommand
4.8.2 Add
4.8.3 Remove
4.9 Data Mapping
Human Interface Design

51 Overview of User Interface

(&)}

5.2 Screen Images and Interactions

References
Appendices

Appendix A: Glossary
Appendix B: Issues List

N 1o

Revision History

Version Primary Author(s)

Description of
Version

Date Completed

Emma Nelson,
Maddison Hickson,
Casey Klimkowsky,
Tyler Geery

v1.0

Initial revision

December 13, 2014

1 Introduction

1.1 Purpose

The purpose of this document is to provide a detailed system design for the various
components that comprise the new Co-op Evaluation System. While the Software
Architecture Document provides a high-level structural view of the application and how the
application interacts with external systems, this document focuses on just the system itself,
and how its various software components are designed and how they interact with one
another.

This document is intended to help the development team determine how the system will be
structured at a detailed level. It is also intended for the project sponsors to sign off on the
detailed structure before the team shifts into development. Finally, the project coach can use
this document to validate that the development team is meeting the agreed-upon
requirements during his evaluation of the team’s efforts.

1.2 Scope

The current Co-op Evaluation System, an application used by OCSCE, has a number of
performance, reliability, usability, and maintainability issues. Among others, session timeouts
and submission timeouts are inherent problems of the current system. A new version started
from scratch with up-to-date technologies needs to be developed.

The purpose of this project is to re-engineer the Co-op Evaluation System in order to leverage
newer web technologies while also improving performance and user interaction. One of our
primary goals is that by the conclusion of this project, we will, at a minimum, have supplied
OCSCE and ITS with a product that is functionally equivalent to the existing system, but with
fewer of the aforementioned issues. Time permitting, we hope to implement a small number of
enhancements, as defined by our Software Requirements Specification.

1.3 Overview

This document provides a general description of the functionality, context, and design of the
project, and addresses the system design from several viewpoints. The first design aspect is
a comprehensive relational model, which outlines how information will be organized in the
system’s database. This is then followed by a detailed design of each of the system’s
components, which is achieved through UML diagrams, such as class diagrams and
sequence diagrams, and accompanying descriptions. Finally, the last element of design
addressed in this document is user interface design. Wireframes are provided as a concept of
what the system’s user interface will ultimately look like.

2 System Overview

2.1 Purpose

The purpose of the Co-op Evaluation System (CES) is to allow students to provide feedback
on their most recent co-op, and for employers to provide feedback on a student’s performance
during their most recent co-op. Additionally, the system is used by faculty to approve or fail a
student’s co-op, and is also used by OCSCE to gather data on students’ co-ops.

For details on the system’s functionality, please refer to the Software Requirements
Specification.

2.2 System Context

The below diagram shows the basic flow of data into and out of the system at a high level.
Our system and direct interfaces are represented inside of the blue container, with the outside
entities depicting how data is created and imported into our system. In this diagram, the
“Co-op Evaluation Database” represents the relational database used to store system
information, which is outlined in Section 3. The box labeled “Co-op Evaluation System”
represents the core functionality of the system, which is broken down as a series of

components in Section 4.
Simplicity Shibboleth Custom
Authentication Employer Login
| Jim's

Campus
Solutions (SIS)
Co-op Feed

Co-op Evaluation

Co-0
9 System

Evaluation
Database

OCES's Co-0p @
Input File

For further information on the architectural design and its influences, please reference the
Architecture Document.

OCES's SQL
Server Co-op
Registration

Co-op
Placement

http://drive.google.com/open?id=1IjsXk0TXYJb2UMEAIEmqoMcyV-Km0TBlHVFyWFJBtww
http://drive.google.com/open?id=1IjsXk0TXYJb2UMEAIEmqoMcyV-Km0TBlHVFyWFJBtww
https://www.google.com/url?q=https%3A%2F%2Fwww.lucidchart.com%2Fdocuments%2Fedit%2Fca91d3b1-365c-401e-aae1-f11b07b88443%2F0%3Fcallback%3Dclose%26v%3D1356%26s%3D612&sa=D&sntz=1&usg=AFQjCNGevoen3hkooLe276aVARMce31rJg
https://docs.google.com/document/d/1KDjtp__8341JOYk5X0ezHX4F23qbkUwyrpvEjSfqVO4/edit?usp=sharing

2.3 User Roles

The following user classes represent the four main roles that users have when interacting with
the system, which is done through the use of a desktop or mobile computer:

Student
A student uses the application to fill out a Work Report following a co-op block.

Employer
An employer uses the application to fill out an Employer Evaluation for a student

following a co-op block.

Evaluator
An evaluator uses the application to review the student’s and employer’s evaluation
submissions to determine the student’s grade (S or F).

Administrator

An administrator uses the application to perform various administrative tasks, including
gathering statistical data from evaluation submissions. Administrator has access rights
to all departments and colleges.

For details on the functionality associated with each of the user roles, please refer to the
Software Requirements Specification.

2.4 Design Constraints and Limitations

The system must comply with the development guidelines provided to us by ITS, as defined
by the EWA Student Development Guidelines wiki page. At a high level, these guidelines
include approved application frameworks, build tools, application server technologies,
database standards, and several other technology standards.

http://drive.google.com/open?id=1IjsXk0TXYJb2UMEAIEmqoMcyV-Km0TBlHVFyWFJBtww

3 Data Design

3.1 Data Description

3.1.1 Users, Departments, Colleges, and Configurations

Relational Model

AdministrationUser EmployerUser Caonfiguration
PK |administrationUserld |Integer PK |employerUserid Integer PK |configurationld |Integer
userName Varchar(64) employerEmail Varchar(64) configkey Varchar(16)
name Varchar(64) employerName Varchar(64) configValue Varchar(128)
createDate DateTime companyName Varchar(64) createDate DateTime
createBy Varchar(15) passwordHash Varchar(128) createBy Varchar(15)
modDate DateTime passwordLastChanged |DateTIme modDate DateTime
modBy Varchar(15) createDate DateTime maodBy Varchar(15)
createBy Varchar(15)
modDate DateTime
modBy Varchar(15)
DepartmentUser DepartmentUserJoin Department
PK |departmentUserld Integer PK |departmentUserJoin |Integer PK |departmentld Integer
name Varchar(64) FK |departmentUserid Integer departmentCode | Char(4)
userName Varchar(64) H ld FK o |departmentld Integer >} H departmentName |Varchar(64)
createDate DateTime createDate DateTime FK |collegeName Varchar(64)
createBy Varchar(15) createBy Varchar(15) createDate DateTime
modDate DateTime modDate DateTime createBy Varchar(15)
modBy Varchar(15) modBy Varchar(15) modDate DateTime
maodBy Varchar(15)
N4
Caollege
PK |collegeld Integer
collegeName Varchar(64)
createDate DateTime
createBy Varchar(15)
modDate DateTime
modBy Varchar(15)
Context

These tables are concerned with functionality around system users, departments and
colleges, and miscellaneous configurations needed by the system.

Element Catalog

AdministrationUser
Contains administrative users, including the administrator’s University ID and full name.

EmployerUser
Contains employer account information. Since employers are not authenticated through
Shibboleth, their account information has to be stored in this system. An employer account is

7

https://www.google.com/url?q=https%3A%2F%2Fwww.lucidchart.com%2Fdocuments%2Fedit%2F067357f5-9e85-4a9c-8a5b-dc4eec4e7901%2F0%3Fcallback%3Dclose%26v%3D2424%26s%3D612&sa=D&sntz=1&usg=AFQjCNF1wJ-F0vj3za7rmXhG-6l3WJy3iw

comprised of their email address, and a password, which is stored as a hash. The date when
the employer last changed his or her email is stored here as well, in case there is a need to
have employers periodically change their password.

DepartmentUser
Contains department users, including the user’s University ID and full name.

DepartmentUserJoin
Associates departments with department users. A user may be a part of multiple departments,
and a department has many users, which is why there was a need for a join table.

Department
Contains departments at RIT, including the department name and code, and the name of the
college the department belongs to.

College
Contains colleges at RIT, including the unique college acronym (e.g. GCCIS).

Configuration
Contains any configuration values that are required by the system, and must be saved within
the database itself.

3.1.2 Email Notifications and Logs

Relational Model

EmailLogEvent EmailContent DepartmentEmailContent
PK |emailLogEventld |Integer PK |emailContentld Integer PK |id Integer
FK [|logEventld Integer FK |emailTypeld Integer FK |departmentld Integer
FK |emailContentld Integer H H subject Varchar(128) H4 H{ FK |emailContentld Integer
recipient Clob header Clob emailContent Clob
cc Clob footer Clob createDate DateTime
bee Cloh createDate DateTime createBy Varchar(15)
sender Varchar(64) createBy Varchar(15) maodDate DateTime
createDate DateTime modDate DateTime modBy Varchar(15)
createBy Varchar(15) modBy Varchar(15) +
modDate DateTime -+
maodBy Varchar(15)
EmailType
PK |emailTypeld |Integer Department
name Varchar(64)
createDate [DateTime
createBy Varchar(15)
madDate DateTime
modBy Varchar(15)
+ LogEventSeverityType
LogEvent I—H- PK |logEventSeverityTypeld |Integer
PK |logEventld Integer name Varch?.r(64)
FK |eventTypeld Integer createDate DateTime
FK |logEventSeverityTypeld Integer crealeBy Varcha_a.r(:lS)
time DateTime modDate DateTime
message Clob modBy Varchar(15)
userld Integer
createDate DateTime
createBy Varchar(15 ‘H_I_H LogEventType
modDate DateTime
modBy Varchar(15 PK |logEventTypeld |Integer
name Varchar(64)
createDate DateTime
createBy Varchar(15)
modDate DateTime
modBy Varchar(15)
Context

These tables are concerned with functionality surrounding email notifications, and various
events within the system.

Element Catalog

LogEvent

https://www.google.com/url?q=https%3A%2F%2Fwww.lucidchart.com%2Fdocuments%2Fedit%2F99aecbc2-9a1a-4563-a96c-9d332fb857d7%2F0%3Fcallback%3Dclose%26v%3D3162%26s%3D612&sa=D&sntz=1&usg=AFQjCNE_yHaEGj4fAf8wQ-b-xIBDATAShQ

A log entry representing an event in the system including a date and a time, a message
explaining the event, which user caused the event, the type of event, and the severity of the
event.

LogEventSeverityType
This table contains a list of all of the different severity levels a log entry can be.

LogEventType
This table contains a list of all of the different event types that can occur in the system.

EmailLogEvent
Contains information about an email, including the subject line, sender, receivers, and a link
to the content.

EmailContent
The content of an email, including the subject line, header, footer, and the time it was last
updated.

EmailType
The type of an email (e.g. Reminder or Employer Login).

DepartmentEmailContent
Contains special department-specific information in an email.

10

3.1.3 Evaluations, Forms, and Questions

Relational Model

QuestionCatagory Question EmployerQuestionAnswer
PK [guestionCategoryld |Integer H H PK |questionld Integer ” PK |employerQuestionAnswerld |Integer
name Varchar(64) questionType Integer FK |guestionAnswerld Integer
description Clob FK |questionCategoryld |Integer answer Clob
crealeDate DateTime text Clab crealeDale DateTime
createBy Varchar(15) createDate DateTime createBy Varchar(15)
modDate DateTime createBy Varchar(15) modDate DateTime
modBy Varchar(15) modDate DateTime modBy ‘Varchar(15)
modBy Varchar(15)
FormQuestion
PK |farmQuestionid |Integer QuestionAnswer
e FK |formid Integer PK |questionAnswerld Integer
PK - [termid Integer FK |questionid Integer HH FK [formQuestionid Integer
termCode Integer FK |parentid Integer FK |evaluationld Integer
createDate |DateTime FK |questionOrder |integer FK |questionid Integer
createBy Varchar(15) questionGroup | Varchar(64) createDate DateTime
modDate DateTime createDate DateTime H H createBy Varchar(15)
modBy Varchar(15) createBy Varchar(15) modDate DateTime
F modDale DateTime modBy Varchar(15)
modBy Varchar(15) WV +
4 Y
DepartmentTermForm F
PK [departmentTermFormid [Integer Form
FK |departmentCode Integer PK [formid Integer StudentQuestionAnswer
K JtermCode Integer name PK_[studentQuestionAnswerld | Integer
FK [formid Integer H H createDate DateTime FK |questionAnswerld Integer
createDate DateTime createBy Varchar(15) answer Clab
crealeBy Varchar(15) modDate DateTime createDate DateTime
modDate DateTime modBy 'Warchar(15) createBy Varchar(15)
madBy Varchar(15) madDate DateTime
Y modBy Varchar(15)
Department 1
Evaluation
PK |evaluationld Integer
EvaluationApprovalStatus. placementid Integer -
PK [evaluationApprovalStalusid |Integer FK | studentFormid Integer EvaluationStaws
name Varchar(64) FK |employerFormld Integer H HH{ PK |evaluationStatusld |integer
createDate DateTime FK |studentSatusid Integer hame Varchar(64)
createBy Varchar(15) FK |employerStatusid Integer H—— createDate DateTime
modDate DateTime studentLastUpdatedDate DateTime createBy Varchar(15)
modBy Varchar(15) employerLastUpdatedDate [DateTime modDate DateTime
studentUID Integer modBy Varchar(15)
FK | employerUserlD Integer
advisor Varchar(64)
createDate DateTime
EvaluationApproval createBy Varchar(15)
- modDate DateTime
PK |evaluationApprovalld Integer modBy \archar(15)
evaluatorUiD Integer
FK |evaluationApprovalStatusld | Integer T
FK |evaluationld Integer “ 4
approvedBy Varchar(64) -
lastUpdatedDate DateTime
createDate DateTime EmployerUser
createBy Varchar(15)
modDate DateTime
modBy Varchar(15)

11

https://www.google.com/url?q=https%3A%2F%2Fwww.lucidchart.com%2Fdocuments%2Fedit%2F3db80d90-cff9-4c29-bc50-e4e15f178ae6%2F0%3Fcallback%3Dclose%26v%3D5588%26s%3D632&sa=D&sntz=1&usg=AFQjCNGb-P_KpHwZ0JB6PI_MMASUPuobiA

Context

These tables are concerned with functionality surrounding forms, form questions, and form
answers. Forms are associated to departments using the DepartmentTermForm, which is
related to the Department table in Figure 2. This part of the data design is also concerned with
evaluations, and the status of an evaluation. Evaluations are associated to the employer that
completed an evaluation through the EmployerUser table in Figure 2.

Element Catalog

Question

Contains questions that are asked on forms, including the question text, and a reference to
which category the question falls under. The questionType field is a reference to a Java enum
that will contain all the possible question types (e.g. Likert).

QuestionCategory
Contains the question categories that can be asked on forms, including the name of the
category (e.g. Ethics).

FormQuestion

Contains the questions to be asked on a form. Each FormQuestion has a reference to a
Question via questionld, and a reference to the Form it belongs to via formld. Additionally,
each FormQuestion has a questionOrder field which contains an integer which specifies what
the ordering of the questions, and the overarching category that the FormQuestion is
connected to via categoryld. Each FormQuestion also has a questionGroup, which is used to
group a set of questions on a form; this field contains the text displayed above a group of
questions.

QuestionAnswer
Contains question answers to questions on forms, including a reference to the Question and
FormQuestion it answers, and the Evaluation it is an answer for.

EmployerQuestionAnswer
Contains employer answers to questions, including the QuestionAnswer the answer belongs
to, the answer itself, and when the answer was last updated.

StudentQuestionAnswer
Contains student answers to questions, including the QuestionAnswer the answer belongs to,
the answer itself, and when the answer was last updated.

Form
Contains forms to be completed by students or employers, including the college name.

DepartmentTermForm
Associates specific forms to the department they are used by and the term are being used for.

12

Term
Contains RIT semester terms, including the term code (e.g. 2141).

Evaluation

Contains references to the student form, employer form, student form status, employer form
status, and the times the student and employer last updated the evaluation. Also contains an
evaluation ID, placement ID, student UID, and employer contact ID.

EvaluationStatus
Contains possible evaluation statuses, including the status name (e.g. Saved).

EvaluationApproval
Contains references to the evaluations and connects that evaluation to a specific evaluator.
This table also connects that evaluation to a specific evaluation approval status.

EvaluationApprovalStatus
Contains possible evaluation approval statuses, including the status name.

4 Component Design

4.1 Reporting Service

ITS will be able to create a view of the system’s database, which can be used by an external
reporting tool to generate dynamic reports. Our system will use Active Query Builder to create
simple table reports that can be viewed within the system.

ReportService Report

term: int
college: String
department: String -
showComments: Boolean
lastName: string
currentYear: int Database
coopNum: int
gender: char

executeReport(String): Table companyName: String

employerReport():Table
studentReport(): Table

4.2 Authentication Service

Using Shibboleth and the system’s EmployerUser table, this service will identify if a user is
within the system and, if so, log them in. At the same time, it will also identify what the user’s
privileges are and act accordingly (e.g. if the user is a student, administrative content will not
be displayed).

13

https://www.google.com/url?q=https%3A%2F%2Fwww.lucidchart.com%2Fdocuments%2Fedit%2Ffa846157-3876-4211-875e-65f2f4254644%2F0%3Fcallback%3Dclose%26v%3D1087%26s%3D612&sa=D&sntz=1&usg=AFQjCNHK1SLInlXlEX_Paxy7OrWRnfAWGg

Shibboleth
Authrentication

Applicationutil

-ApplicationUtil()
-determineAccountType():Enum
+getintance(): ApplicationUtil EmployerAuthentication
+getBaselURL():String

+getAuthUser(shib info, account info):User
+createUser(): User

+getUnAuthUser(): User

+authenticate(username, password): Boolean

User Privileges

+ firstName: String accountType: Enum
+ lastName: String
+ uid: String

+ userName: userName ‘
+ accountType: Enum

+ affiliations: ArrayList<String>
+ privilages: Privilages

+editUserPrivilages(): Boolean
+emailTemplatePrivilages(Department): Boolean

+User()
getters and setters

4.2.1 User

Our system will take information given to us by Shibboleth or our employer authentication
system and create a specific User object that can be accessed by the entire system. The
system will use this information to specify an enumeration to that user, which will define what
that user’s privileges are.

4.2.2 Privileges

As stated above, our system will use an enum to associate each user type to each individual
user. This enum will define the user type; for example, “1” could represent an employer, “2”
could represent an administrator of the system, and so on. The User object contains a
Privileges class, which returns true or false for user-specific privileges that are dependent on
the user type (or enum).

4.2.3 EmployerAuthentication

This class is in charge of taking in a user's username and password and authenticating, and
is dependent on whether or not the given user has a valid employer account in our system.
The employer’s credentials are passed into our system through the import file, which is
discussed in more depth below.

14

https://www.google.com/url?q=https%3A%2F%2Fwww.lucidchart.com%2Fdocuments%2Fedit%2F645b27e4-c1e4-4068-96c1-38d10d3cc150%2F0%3Fcallback%3Dclose%26v%3D2174%26s%3D441&sa=D&sntz=1&usg=AFQjCNG_OpWNURyYlrmqecGpwPyQ91nBCg

4.2.4 Shibboleth

<<abstract>>
AbstractSecurityFilter

I

<<abstract>>
ShibSignOnHandler

I

ShibbloethSecurity Filter

4.3

SingleSignOnHandler |

Form Service

Subsystem

FormService

ShibuUtil ShibHeader
SingleSignOnuUtil
User

addFarm(json)
removeForm(json)
addQuestion(json)
removeQuestion{json)
updateQuestion(json)

Form

Question

|

<<interface>>
FormCommand

+FormCommand(Form)
+execute()

!

<<interface>>
QuestionCommand

+QuestionCommand(Question)
+execute()

ShibFields

4.3.1 FormCommand

This class contains an execute method, which handles a Form object and passes it to a
designated class that knows what to do with it.

AddForm RemoveForm AddQuestion RemoveForm UpdateQuestion
+execute()
+execute() +execute() +execute() +execute()

ShibProperties

https://www.google.com/url?q=https%3A%2F%2Fwww.lucidchart.com%2Fdocuments%2Fedit%2F4a3029f9-93bc-4f89-9801-5e69c2aa6985%2F0%3Fcallback%3Dclose%26v%3D2695%26s%3D612&sa=D&sntz=1&usg=AFQjCNEaRDFQp8H1VejN2L6_EDW7VYGvhQ
https://www.google.com/url?q=https%3A%2F%2Fwww.lucidchart.com%2Fdocuments%2Fedit%2Fd6ef7c57-a394-447b-817b-8f58eea0f629%2F0%3Fcallback%3Dclose%26v%3D2833%26s%3D612&sa=D&sntz=1&usg=AFQjCNHwEt0vSvWZL9M40_z8lfd0Y-60CQ

4.3.2 AddForm
A “receiver” class, which handles adding a form to the system by persisting it to the database.

4.3.3 RemoveForm

A “receiver” class, which handles removing a form from the system by removing it from the
database.

4.3.4 QuestionCommand

Contains an execute method, which handles a Question object and passes it to a designated
class that knows what to do with it.

4.3.5 AddQuestion

A “receiver” class, which handles adding a question to a specific form in the system by
persisting it to the database.

4.3.6 RemoveQuestion
A “receiver” class, which handles removing a question to a specific form in the system by
persisting it to the database.

4.3.7 UpdateQuestion

A “receiver” class, which handles updating a question in the system by persisting it to the
database.

4.4 Email Service

The Email Service will be in charge of sending emails and editing email templates. These
emails will be sent out automatically, but can be manually overridden.

4.4.1 Email Logging Service

The Email Logging Service will be in charge of logging events within the system’s database.
Events, such as emails being sent out, will be logged. These logged events will be kept within
a text file.

16

4.4.2 Email Template Service

EmailTemplateService EmailTemplate

-templateType: String
-department: String
-formAddress: String
+load() -fromName: String
+update() -body: String
-signature: String

[
v \’

UpdateEmailTemplate LoadEmailTemplate

emailTemplate : Template emailTemplate : Template

+loadTemplate(Type String,

+updateTemplate(emailTemplate) Department String):
Boolean EmailTemplate

| J

The Email Template Service is the controller for all actions associated with email templates.
The Email Template Service is in charge of updating the view and delegating commands from
the view. The Email Template Service will be called by the view directly. The EmailTemplate
class is used to contain all the information related to an email template row in the database.
UpdateEmailTemplate is the class responsible for updating a specified template within the
database. Lastly, LoadEmailTemplate will find a specific email template from the database
and send its associated information to the Email Template Service.

4.5 User Management Service

The User Management Service is in charge of giving or removing administrative and
department access to specific users. This will be done by storing the user’s UID into the
admin or department table within the system. For this service, we will be making use of the
command pattern. The User Management Service will be responsible for creating the User
object with the information from the client.

17

https://www.google.com/url?q=https%3A%2F%2Fwww.lucidchart.com%2Fdocuments%2Fedit%2F91240ea3-2b62-4d8d-935f-2f69386ab48b%2F0%3Fcallback%3Dclose%26v%3D2505%26s%3D397&sa=D&sntz=1&usg=AFQjCNFDKy22AceJ_kYvV6Ahl4HkEhFiqg

User

UserManagementService

addUser(json)
removeUser(json)
getAllUsers(json)

<<interface>>
UserCommand

+UserCommand(User)

+execute()

|

GetRecords

AddUser

RemoveUser

+execute()

4.5.1 UserCommand

This class contains an execute method, which handles a User object and passes it to a

+execute()

designated class that knows what to do with it.

4.5.2 AddUser

A “receiver” class, which handles adding a user to the system by persisting them to the

database.

4.5.3 RemoveUser

A “receiver” class, which handles removing a user from the system by removing them from

the database.

18

https://www.google.com/url?q=https%3A%2F%2Fwww.lucidchart.com%2Fdocuments%2Fedit%2F40f5fa70-5cb4-4a21-a30d-ad42ee92df0e%2F0%3Fcallback%3Dclose%26v%3D2222%26s%3D440&sa=D&sntz=1&usg=AFQjCNGKkv1oEJ3il-tsLTroKdvz71PNJQ

4.6 Evaluation Service

The Evaluation Service will be responsible for handling all evaluations that are being tracked
by the system. An evaluation is either completed or approved. For this service, we will be
making use of the command pattern.

EvaluationService

Evaluation

createEvaluation(Evaluation evalType)
updateEvalStatus(Evaluation evaluation)

<<interface>>
EvaluationCommand

+EvaluationCommand(Evaluation)
+execute()

|

AddEvaluation UpdateEvaluationAnswers UpdateEvaluationStatus

+execute()
+execute() -updateQuestionAnswer() +execute()

4.6.1 EvaluationCommand

This class contains an execute method, which handles an Evaluation object and passes it to a
designated class that knows what to do with it.

4.6.2 AddEvaluation

A “receiver” class, which handles adding an Evaluation to the system by persisting it to the
database.

4.6.3 UpdateEvaluationAnswers

A “receiver” class, which handles updating question answers in the system by persisting it to
the database.

19

https://www.google.com/url?q=https%3A%2F%2Fwww.lucidchart.com%2Fdocuments%2Fedit%2F924ead30-bac2-4d65-924a-0f37f375689b%2F0%3Fcallback%3Dclose%26v%3D1161%26s%3D436&sa=D&sntz=1&usg=AFQjCNFFZWoW2zlFwHbs184kEfvDEe3Rgw

4.6.4 UpdateEvaluationStatus

A “receiver” class, which handles updating an Evaluation object’s status in the system by
persisting the changes to the database.

4.7 File Import Service

This service handles importing the file given to us from Jim’s system, and will be used to

populate data into our system. If a new user has registered for a co-op and is passed into our
system, this service will handle creating an Evaluation object and associating it with that user.

File Import Service

+import(File)

l

ImportHandler

+Handlelmport(String)

T

ImportEvalutation

ImportEmployer

+Handlelmport(String)

+Handlelmpart(String)

20

https://www.google.com/url?q=https%3A%2F%2Fwww.lucidchart.com%2Fdocuments%2Fedit%2F5b546717-50a2-436c-981f-91ff8a1e7773%2F0%3Fcallback%3Dclose%26v%3D420%26s%3D400&sa=D&sntz=1&usg=AFQjCNF8C7Vry6c0Qsk2EBj31b-0scCqpA

4.8 School Service

Department

SchoolService

addDepartment(json) College

removeDepartment(json)
addCollege(json)
remoaveCollege(json)

<<interface>>
SchoolCommand

+SchoolCommand(Record)

+execute()

Add Remove

+execute() +execute()

4.8.1 SchoolCommand
This class contains an execute method. This method handles a Record object, which contains
a college or department, and passes it to a designated class that knows what to do with it.

4.8.2 Add
A “receiver” class, which handles adding a department or college to the system by persisting
them to the database.

4.8.3 Remove
A “receiver” class, which handles removing a department or college from the system by
removing them from the database.

21

https://www.google.com/url?q=https%3A%2F%2Fwww.lucidchart.com%2Fdocuments%2Fedit%2F87712bc7-b17d-4d80-a243-6f7af4e07b6d%2F0%3Fcallback%3Dclose%26v%3D2125%26s%3D376&sa=D&sntz=1&usg=AFQjCNGDteDsXQDVwBbUUiHE0O1Cnw3nrg

4.9 Data Mapping

Record

GetRecords

+ getAllRecords(String tableName):ArraylListcRecords>
+getTableRow()

I

College Evaluation DepartmentUser AdminUser Department EmailTemplate

-templateType: String
-department: String
-formAddress: String
+getTableRow() +getTableRow() +getTableRow() +getTableRow() +getTableRow() -fromName: String
-body: String
-signature: String

+getTableRow()

5 Human Interface Design

5.1 Overview of User Interface

One of the major pain points of the current system is its poor usability, and we aimed to
remedy that while designing the user interface of the new system. Although we referenced the
RIT Web Standards document for colors, fonts, and other guidelines we are expected to work
within, we used this document minimally since it was last updated in 2011. In order to design
to fit where RIT’s web styles are currently headed, we used newer websites within the RIT
domain or websites that had recently been updated as our primary inspiration for the new
user interface. The OCSCE website was the biggest influence, as it has recently been
updated, and the Co-op Evaluation System is a part of their suite of applications. We wanted
to make sure it fit in and used similar navigation formats. Other websites used as inspiration
include PawPrints, a new website built by RIT Student Government, and the website for the
RIT Honors Program, which has been given a new user interface within the last year.

5.2 Screen Images and Interactions
All our wireframes were created in Lucidchart and are available on our website or here.

We chose not to include them directly in this document in order to keep it from becoming too
long, and to minimize loading time in the live Google Drive version.

6 References

[11 A. Shvets, G. Frey, and M. Pavlova. SourceMaking. [Online]. Available:
http://sourcemaking.com

[2] E. Gamma , R. Heml, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, 1st ed. Indianapolis, Indiana: Addison-Wesley

22

https://www.google.com/url?q=https%3A%2F%2Fwww.lucidchart.com%2Fdocuments%2Fedit%2F2a5bc3d0-c363-4cbf-b135-c5a5b5c552dc%2F0%3Fcallback%3Dclose%26v%3D2357%26s%3D612&sa=D&sntz=1&usg=AFQjCNGpKSmz6YXy26WqopbtOUP7qSzVuQ
https://www.google.com/url?q=https%3A%2F%2Fwww.lucidchart.com%2Finvitations%2Faccept%2Fc10d5da2-a962-4739-9ee7-1c8b55e49ac3&sa=D&sntz=1&usg=AFQjCNHUs-IDGGgDz5gdOkQBKCr8dckNAA
http://www.google.com/url?q=http%3A%2F%2Fsourcemaking.com&sa=D&sntz=1&usg=AFQjCNEpobl3jou6DhbMEWxg0MfvMTfuGQ

Professional, 2002.
[3] RIT Web Standards, Rochester Institute of Technology, Rochester, NY, 2011.

7 Appendices

Appendix A: Glossary

Term Definition

ITS Information and Technology Services

OCSCE Office of Career Services and Cooperative Education
RIT Rochester Institute of Technology

Appendix B: Issues List

The team is using Trello to track issues; however, below you will find a high-level list of
outstanding issues with this document. If finer detail is required, please reference the team
Trello board, activity tracker, and/or Google Drive.

Number

Priority

Description

23

