Software Architecture
Documentation

Co-op Evaluation System
Senior Project 2014-2015

Team Members:
Tyler Geery
Maddison Hickson
Casey Klimkowsky
Emma Nelson

Faculty Coach:
Samuel Malachowsky

Project Sponsors:
Jim Bondi (OCSCE)
Kim Sowers (ITS)

Table of Contents

Table of Contents

Revision History

> 1w N =

[&)]

6

Introduction
Background

Functional Requirements
Quality Attributes

4.1 Usability

4.2 Availability

4.3 Maintainability
4.4 Testability

Architecture Overview
51 Big Picture
5.1.1 System Context
51.2 User Interactions
51.3 Data Flow
2 View Introduction
3 Patterns and Tactics
5.31 Architectural Drivers and Tactics
Usability
Availability
Maintainability

Testabilit
5.3.2 Patterns

Service-Oriented Pattern

Domain Model and Data Mapper Patterns
Client-Server Pattern
Model-View-Controller Pattern

(@]

(6]

Views
6.1 Logical (Layered) View
6.1.1 View Diagram
Notation Explanation
6.1.2 Element Catalog
Elements
Presentation Layer
Application Logic Layer
Service Layer
Domain Model Layer
Data Access Layer (DAL)
Data Source Layer
Relations

IO 00 N

Presentation Layer to Application Logic Layer
Application Logic Layer to Domain Layer
Domain Layer to DAL to Data Source Layer
Interfaces
Interface Identity
Services Provided
Syntax
Semantics
Data Input and Output
Other Considerations
Exception Definitions
Quality Attribute Characteristics
Design Rationale
6.1.3 Rationale
6.2 Process View

6.2.1 View Diagram
6.2.2 Element Catalog
Elements
Client
Server
Request/Reply Connector
Relations
Client to Server
Interfaces

Interface Identity
Services Provided
Syntax
Semantics
Data Input and Output
Other Considerations
6.2.3 Rationale
Acknowledgements
References
Appendices
Appendix A: Glossary
Appendix B: Issues List

Revision History

Description of

Version Primary Author(s) Version Date Completed
Emma Nelson,
v1.0 Maddison Hickson, | \ o) revision October 27, 2014
Casey Klimkowsky,
Tyler Geery
Update after
v1.1 Casey Klimkowsky | receiving feedback 1 o 0 her 3. 2014
from Lisa on
10/31/14
v1.2 Emma Nelson Validate changes November 6, 2014

1 Introduction

The purpose of this document is to provide a detailed architecture design of the new Co-op
Evaluation System by focusing on four key quality attributes: usability, availability,
maintainability, and testability. These attributes were chosen based on their importance in the
design and construction of the application.

This document will address the background for this project, and the architecturally significant
functional requirements. Each of the aforementioned quality attributes will be described
through a comprehensive set of scenarios followed by an architectural overview, which
includes a bird’s eye view and a full description of patterns and tactics that will be used to
address the core quality attributes. This will be followed up by a look at a couple views into
the system. Finally, acknowledgements, references, and appendices will round out the
document.

The intention of this document is to help the development team to determine how the system
will be structured at the highest level. It is also intended for the project sponsors to sign off on
the high-level structure before the team shifts into detailed design. Finally, the project coach
can use this document to validate that the development team is meeting the agreed-upon
requirements during his evaluation of the team’s efforts.

2 Background

RIT’s current Co-op Evaluation System, an application used by OCSCE, has a number of
performance, reliability, usability, and maintainability issues. Among others, session timeouts
and submission timeouts are inherent problems of the current Co-op Evaluation System. A
new version started from scratch with up-to-date technologies needs to be developed.

The purpose of this project is to re-engineer the Co-op Evaluation System in order to leverage
newer web technologies while also improving performance and user interaction. Since we are
essentially recreating the CES, the new system has to interface with any external components
that the current CES uses or the replacement systems, as determined by ITS. These
components include Shibboleth for RIT user authentication, the ITS mail server for sending
emails to users, and an Oracle SQL database for storing system information. Refer to the
Software Requirements Specification for a context diagram and a detailed description of how
these components interact. The context diagrams are also available in section 5.1 of this
document.

The system must comply with the development guidelines provided to us by ITS, as defined
by the EWA Student Development Guidelines wiki page. At a high level, these guidelines
include approved application frameworks, build tools, application server technologies,
database standards, and several other technology standards. Although these constraints will
primarily affect the detailed software design, we still need to take them into consideration
when creating the system architecture.

3 Functional Requirements

Many of the features involve saving, updating, or viewing evaluation forms, and thus will need
to be accounted for in the architecture due to amount of interfacing with the database
required. The system must support concurrent reads from, and writes to the database.

Additionally, the system may have the need to interface with several external APIs. The
system must interact with ITS’s email server in order to send emails to students, employers,
and other users. Furthermore, although the particular services are unknown at this time, it is
likely that the system will have to interface with an external report and form generation tools.
These features are architecturally significant, as the system should be designed in a modular
fashion so that external services may be swapped in and out with ease to handle future
updates.

For a detailed description of all functional requirements, refer to the Software Requirements
Specification.

4 Quality Attributes

The following tables describe concrete scenarios for the top four quality attributes that must
be included in the final system. The architectural drivers are prioritized in order of significance.

4.1 Usability

Scenario The end user wants to discover what features are available to them.
Source End user

Stimulus End user wants to learn system features

Artifact Co-op Evaluation System

Environment At runtime

The system provides an interface that feels familiar to the user and
Response follows good practice in website interface design to improve
learnability

Number of errors in completing a task, ratio of successful operations

Response Measure to total operations

The end user wants quick access to core features for their user

Scenario . -

class to improve efficiency of use.
Source End user
Stimulus End user wants to improve efficiency

Artifact

Co-op Evaluation System

Environment

At runtime

Response

The system displays pertinent information by default on the user’s
home screen without forcing them to dig into nested menus to find
the information for which they are looking.

Response Measure

Task time

The user wants to receive user- and situation-appropriate error

Scenario

messages when an error occurs.
Source End user
Stimulus Minimize impact of errors
Artifact Co-op Evaluation System

Environment

At runtime

Response

The system will provide visual feedback stating whether or not a
given action was successful. If it was not successful, the system will
provide details on what went wrong and how to rectify the situation,
when possible. Furthermore, the system will send the user a
follow-up email with the status of any submissions in the case of
Work Reports and Co-op Evaluations.

Response Measure

User satisfaction, amount of time lost, amount of data lost

User wants to know which actions are available and that the action

SIS they choose is being executed correctly.
Source End user

Stimulus Increasing confidence and satisfaction
Artifact Co-op Evaluation System

Environment

At runtime

Response

The system will only display actions that are currently available as
“active”. Any other options with either be hidden or greyed out and
unclickable. Furthermore, the system will provide visual feedback

stating whether or not a given action was successful.

Response Measure

User satisfaction, gain of user knowledge

4.2 Availability

The system times out before a Work Report or Employer Evaluation

SIS can be submitted.

Source Internal to system

Stimulus The maximum time allowed on form submission page has elapsed
Artifact Work Report or Employer Evaluation

Environment

Normal operation

Response

Notify the user that their session has timed out, and that the current
form was not submitted.

Response Measure

Number of session timeouts

The application server fails or becomes unresponsive, causing the

LT entire system to fail.

Source Internal to system

Stimulus A fault within the application server
Artifact Application server

Environment

Degraded

Response

The entire system shuts down until the application server is brought
up again.

Response Measure

Percentage of uptime (Minimum of 95%)

Scenario The system is compromised by a Denial of Service (DoS) attack.
Source External to system

Stimulus The system receives more requests per second than it can handle
Artifact Web service

Environment

Normal operation

Response

Standard response according to RIT Systems and Operations
protocol.

Response Measure

Length of attack (The DoS attack does not continue for longer than
1 minute.)

The system is unable to handle a large number (over 6,000) of

Scenario
concurrent user requests.
Source External to system
Stimulus The system receives more concurrent requests than it can handle
Artifact Web service

Environment

Normal operation

Response

The system blocks additional concurrent user requests, and
displays a message to the user to try accessing the system again
later.

Response Measure

Load time (Takes no longer than 10 seconds for pages to load)

Scenario A bug or fault in the application causes a system-wide failure.
Source Internal to system

Stimulus A bug or fault in the application

Artifact The component in which the bug or fault occurred

Environment

Degraded

Response

The system handles any and all exceptions that may occur, so that
the system may fail gracefully.

Response Measure

A meaningful error message is logged, indicating what it was that
caused the application to fail.

4.3 Maintainability

Code base is large and complex making it difficult to add new

ST features

Source Developer, Maintainer

Stimulus New feature or additional functionality is desired

Artifact Detailed Design Document, The Co-Op Evaluation System

Environment

Design time, runtime

Response

Refactor code to be simpler and contain the new functionality

Response Measure

Time spent refactoring

Lack of documentation hinders usage, management, and future

Scenario
upgrades.
Source Developer, Maintainer
Documentation was not made a priority throughout the development
Stimulus of the application and thus does not provide the most up-to-date
information on the system features and functionality
Artifact System documentation

Environment

At runtime

Response

Developers spend time improving documentation

Response Measure

Time spent understanding the system that would have been aided
by more robust documentation

Excessive dependencies between components and layers and

Scenario inappropriate coupling to concrete classes prevents easy
replacement, updates, and changes.

Source Developer, Maintainer

Stimulus Developer wish to replace, update, or modify part of the system.

Artifact The Co-op Evaluation System

Environment

At runtime

Response

Re-design the system with well-defined layers, or areas of concern,
that clearly delineate the system’s Ul, business processes, and data
access functionality. Application configuration for commonly
changed parameters, such as URLs, will maintained outside the
code base following RIT EWA standards.

Response Measure

Time spent redesigning and refactoring

10

4.4 Testability

Scenario There is a lack of test planning.
Source System verifier
. Subsystem integration completed. Testing did not start early during
Stimulus .
the development life cycle.
Artifact The Co-op Evaluation System

Environment

At design time

Response

Prepare a test environment

Response Measure

Test coverage, percent executable statements executed, length of
time to prepare test environment

Scenario Test coverage of the system is inadequate.
Source All testers
Subsystem integration completed os system delivered. Because
Stimulus both manual and automated tests don’t cover a large portion of the
project, the testing team wish to expand the test suite.
Artifact The Co-op Evaluation System

Environment

At development time

Response

Provide a fuller testing environment, which includes automated tests
and coverage reporting.

Response Measure

Percentage of paths or executable statements covered

Scenario Testing is not consistent throughout the system.
Source System verifier, Client acceptance tester
Subsystem integration completed os system delivered. Automated
Stimulus or granular testing cannot be performed if the application has a
monolithic design
Artifact The Co-op Evaluation System

Environment

At deployment time

11

Design the system to be modular to support testing. Design
Response components that have high cohesion and low coupling to allow
testability of components in isolation from the rest of the system.

Test coverage, percent executable statements executed, length of

Response Measure | o Jongest dependency chain in a test

5 Architecture Overview

5.1 Big Picture

The major subsystems are described in high-level details below in Section 6 Views. In short,
they are divided up by layers. There is the view, business logic, domain model, data
interaction layer, and data source. Each of these divisions is vital for the system to operate.
Refer to Section 6 for further details.

5.1.1 System Context

ITS DNS/Web Server Co-op Evaluation ITS Mail Server
System

S \-

Oracle SQL Database

Shiboleth

Figure 1. Context diagram of the Co-op Evaluation System

The above diagram outlines the major components of the overall system, subsystem
interconnections, and external interfaces.

https://www.lucidchart.com/documents/edit/18bead91-3be1-44a6-a14e-2eaac04875d3/0?callback=close&v=1463&s=612

5.1.2 User Interactions

RIT

Figure 2. User interaction with the Co-op Evaluation System

P
Administrator
-——"-—-——_—-—-.
T
PC
Evaluator

Co-op Evaluation System

Server

|

Student

S¥

Employer

The diagram above show a high-level view of the user interaction with the system as well as
the interaction between technologies involved.

5.1.3 Data Flow

Simplicity

Shibboleth
Authentication

Custom
Employer Login

Campus
Solutions (SIS)
Co-op Feed

OCES's SQL
Server Co-op
Registration

Co-op
Placement

OCES's Co-op
Input File

Co-op

Co-op Evaluation

Evaluation System
Database
ITS Mail
Server

Jim's
Reporting

13

https://www.lucidchart.com/documents/edit/ca91d3b1-365c-401e-aae1-f11b07b88443/0?callback=close&v=1356&s=612

The above diagram shows the basic flow of data into and out of the system at a high level.
Our system and direct interfaces are represented inside of the blue container, with the outside
entities depicting how data is created and imported into our system. Our system does not deal
with data creation, however it is responsible for importing and storing it.

5.2 View Introduction

The two views that we have detailed are a Logical (Module) View and a Process
(Component-and-Connector) View. The Logical View describes the layered structure of the
system, while the Process View describes the client-server structure of the system. The
Logical View shows how the the system is structured as a set of functional code units, or
modules, whereas the Process View shows how the system is structured as a set of
computational elements that have runtime behavior (components) and interactions
(connectors).

The Logical View is a higher-level view of the system than the Process View. The Logical
View shows the layers that compose the system, and the hierarchy of these layers. The
Presentation Layer is encapsulated by the client, whereas the the lower layers are
encapsulated by the server. The Process View also details the interactions between the client
and the server and the specific components that comprise each.

Although it is standard to use a 4+1 View Model when describing a system architecture, we
omitted the Physical View, Development View, and Use Case View from this document. At
this time, we do not have the details of the system deployment, which would be outlined by
the Physical View. We also do not yet have implementation details of the system, which would
be outlined by the Development View. Both of these aspects of the system will be covered at
a later date in separate documents. Finally, the Use Case View, which describes the various
use cases of the system, has already been outlined in our Software Requirements
Specification. Reference Section 4 of the Software Requirements Specification for more
information on the Use Case View.

5.3 Patterns and Tactics

5.3.1 Architectural Drivers and Tactics

In order to maintain our focus on usability and iterate quickly on our user interface, we will be
using the tactic Separate User Interface. This allows us to keep the user interface separated
from the backend business logic and data source, thus enabling changes to be made easier
or even for the user interface to be swapped out in the future, if another modernization is
needed. The team will utilize a model-view-controller architectural pattern to accomplish this
task. More details will be provided in Section 5.3.2 Patterns.

14

As the user will have the ability to undo or rollback certain actions (e.g. archiving an
evaluation), the tactic Support User Initiative will be used to handle a reasonable amount of
error correction.

Availability is an important architectural driver for the system, as the system must be available
in order for students and employers to submit evaluations. Additionally, the system must be
available for co-ops to be approved or denied, and for administrators to perform various
managerial tasks. If the system is unavailable for any of these tasks, cascading delays may
occur during any stage of the co-op evaluation process.

In order to achieve the best availability, we plan to use Exceptions for fault detection, Active
Redundancy and State Resynchronization for fault recovery, and Transactions for fault
prevention. Unhandled exceptions may put the system into a weird state; in order to avoid
this, the system will gracefully handle Exceptions when a fault occurs to prevent the system
from becoming unavailable.

In order to recover from a fault, the system will utilize Active Redundancy, which means that
all system components will respond to events in parallel. As a result, all components will
always be in the same state. This state is dependent on the response from one component,
which is usually the first component to respond to a fault, and all other states are discarded.
This tactic is often utilized with client-server configurations, as the downtime of systems using
this tactic is usually only milliseconds. Active Redundancy must be used with State
Resynchronization, as the component being restored must have its state upgraded before it is
returned to service. The state of this component is synchronized using a single message
containing the state that it must be returned to.

Finally, the system will use Transactions, which are bundles of sequential steps, to help
prevent faults from ever occurring. Transactions help to prevent collisions among concurrent
users, and help to prevent any data from being affected if one step in a process fails.

Maintainability is an important architectural driver for the system because the system will be
maintained by ITS on regular basis once the system is deployed in production. This is also an
important service at RIT so if defects arise, fixes must be able to be deployed as quickly as
possible.

Being able to identify the area in which a defect is occurring is a major part of maintainability.
This becomes easier to do when the system is not heavily coupled and each feature is
modularized. When each feature is modularized it can be easier to pinpoint the root cause of
defects because each feature can be tested independently to help find the issue.

Additionally, the system must be heavily documented and these documents must be
organized and stated in an easy-to-understand manner. Once we have left, our

15

documentation will be the only source of knowledge of the system, and will be used to
understand the system when the system needs to be updated.

Testability must be determined in early stages of development. Due to the iterative nature of
our methodology, regression testing will be one of the primary forms of testing conducted.
Therefore, the tactic Able to Stub/Mock is highly valued to us. This tactic will allow us to
create tests and quickly use them to test the system when changes are made or new features
are added to the system.

Another tactic for testing our team plans to conduct is Separating the Interface from
Implementation, which is a form of providing input and capturing output. Separating the
interface from the implementation allows substitution of implementations for various testing
purposes. This will also allow us to write tests without having to touch the interface itself.

5.3.2 Patterns

The Model-View-ViewModel helps takes the data stored in the model(database) and
manipulate for specific pages. The ViewModels are containers for specific information that are
turned into JSON by spring and can be used by View. This helps create a separation between
the database itself and the data that is being sent to the View. This pattern also allows for the
controllers to take ViewModels that contain only the data needed from the User.

The domain model pattern incorporates both behavior and data into an object-oriented model
of the application domain. When using this pattern, the model of the domain is organized
primarily around the nouns in the domain. The domain model is then separated from the
database with the use of the data mapper pattern.

The data mapper is a layer that sits between the database and the domain model, which
handles the loading and storing between the database and the domain model; therefore
allowing both to vary independently. This separation of the database and domain model
means that the domain objects do not have any knowledge that that database exists, and the
domain model does not know that the data mapper exists.

The separation introduced by the data mapper pattern supports modifiability, as either entity
can be modified independently of each other. The use of the domain model pattern supports
increasing complexity and thus enhances extensibility as well.

Clients initiate interactions with servers, which provide a set of services. The clients invoke
services as needed from those servers, and then wait for the results of those requests. The
client is responsible for displaying and performing small updates on the data, while the server
handles data management.

16

The client-server pattern supports modifiability and reuse, as it factors out common services,
allowing them to be modified in a single location. This pattern also supports scalability and
availability by centralizing the control of these resources and servers.

The model-view-controller (MVC) pattern separates user interface functionality from
application functionality. With MVC, application functionality is divided into three types of
components: models, which contain the application data; views, which display the underlying
data and interact with the user; and controllers, which mediate between the model and the
view and manage state changes.

The MVC pattern supports usability, as it allows the user interface to be designed and
implemented separately from the rest of the application.

17

6 Views

6.1 Logical (Layered) View

6.1.1 View Diagram

g)

Presentation Layer
HTML] AngularJS]
Client
CSS/Sass] Bootstrap]
Application Layer
Domain Model
Data Access Layer
Server [Spring] [JPAHiberate]
Repositories
Data Source —
Oracle
Database

Each layer is denoted as long rectangle with a black border. The smaller rectangles inside
represent a range of elements contained in each layer. Those included are not intended to be
a complete list of entities. The large rectangles with blue borders demonstrates the physical
separation of the layers between the client and the server. More information on that division
will be provided in Section 6.2.

18

https://www.lucidchart.com/documents/edit/d2018579-0379-402d-b400-4e7c4cfe60b3/0?callback=close&v=1463&s=612

6.1.2 Element Catalog

Presentation Layer

The presentation layer will provide the user with a graphical interface for interacting with the
system. It will be composed of HTML, CSS, JavaScript, and other related files that will run in
the user's web browser of choice. The main goal of this layer is to provide everything the user
needs to complete their tasks in the system. The quality attributes that pertain to usability and
front-end design will have the biggest pull on the presentation.

Application Layer

The role of the application logic layer is to encapsulate the system controllers, which
implement much of the core business logic. It will also serve as the connection between the
user interface and the domain model, thus maintaining the separation of concerns. The
Application Layer takes information from the domain model and turns that into ViewModels,
which are used to send data to the Presentation Layer.

The Application Layer uses controller to modularize the features of the application. Each
controller acts as a facade, serving as general interfaces for a features that can be accessed
by the presentation layer.

Modularizing the controllers within the system will also make it easier to pinpoint potential
defects, allowing for easy maintainability. Each controller can be tested individually, which
allows for good system-wide testability.

Domain Model Layer
The domain model contains all of the system’s object representations of data in the system.
This also includes associated methods for any objects that contain their own functionality.

Data Access Layer (DAL)

The data access layer contains all of the mappers to the data in the system. The mappers are
in charge of the coordination of all communication between the objects in the domain layer
and their corresponding tables in the database. This ensures that domain layer objects have
no knowledge of the database, its schema, or any SQL interface.

Data Source Layer

All persistent information and any external API integration (e.g. SIS, Simplicity) make up the
data source layer. This includes the Oracle database that will contain all of the data for the
system. At this time there is no expectation for integration with external systems, but the
system should be architected to accommodate such integrations in the future, as there are a
few options on the table.

19

Presentation Layer to Application Logic Layer

The presentation layer represents the view of the system, and the application logic layer
contains the controllers, which house the logic for the different roles. In following with the
MVC architectural pattern, the controllers take information from the view and use it to modify
or request related data in the model. This prevents the view from directly modifying the model,
and instead has the view display changes to the data.

Application Logic Layer to Domain Layer

The application layer modifies the data encapsulated in the domain layer according to the
business logic rules before it reports changes back to the presentation layer to be displayed to
the user. The application layer performs this data encapsulation through the creation of
ViewModels.

Domain Layer to DAL to Data Source Layer

The domain layer is the active representation of the information stored in the data layer. When
it is time to store data according to the procedures defined in the upcoming detailed design
stage, the changes to the domain layer will be pushed to the data source layer to create a
persistent copy of the data to be stored across sessions through the DAL. All interactions
between the DAL and Data Source Layer will indirectly be SQL queries in accordance with the
ACID properties (i.e. an ORM framework will generate the SQL statements in most cases).

Interface ldentity

The DataMapper pattern acts as the interface between the persistence layer, and the domain
layer, the object model. It is displayed in Figure 4 as the DAL. It serves as a way to convert
domain model objects to data formated for the database.

Data Access Layer '\ <<interface>> Domain Madel
DataMapper Layer
+ Insert()
ObjectMapper + Update()
+ Delete()
+ GetOne() Data Source
+ GetAll() Layer

The system also interfaces with External APIs for form and report generation. These APls
provide a set of methods for utilizing their tools that make up the interface between their
system and ours.

20

Co-op Evaluation ; API H External System
System

Services Provided

Syntax

The mapper interface provides a way for the models in the domain layer to be inserted,
updated, retrieved, or deleted from the respective table in the data layer. The object mappers
in the data access layer implement the DataMapper interface as shown in Figure 5. The
syntax for interaction will consist of SQL queries; however, these queries will likely be hidden
behind a technology-specific framework for database interaction such as Spring for Java.

As for the external tools used for report and form generation, their APIs will act as our
system’s interface to their functionality. Our system will used their exposed methods to access
the necessary functionality.

Semantics

Insertion will take the object, write it to the database as a new row, and perform any other
necessary operations to save the data such as joins to update relation tables. Update
operations will update the associated row in the database to reflect the changes made in the
domain model objects. GetOne will select and return a specific element in the table based on
an id or other identifying property, whereas GetAll will return all the elements in the table.
Delete will remove the specified row from the table and execute all the cleanup of associated
relationships. Each of these operations should be atomic and satisfy integrity constraints.

For each method used in the external APls, the system will call the method, sending all the
necessary data along. The other system will take the data, modify it as requested, and return
it in the desired format.

Data Input and Output

The user inputs their information through forms displayed in their web browser of choice. The
client then sends that data to the server through the service layer to the application logic layer
for processing, manipulation, and transformation before being written to the domain model
layer. The information may be forwarded on through the data access layer to the data source
layer to be written out to the database for more permanent persistence through the use of
CRUD operations. Data may also be retrieved from the data source and manipulated by the
application logic layer before being displayed on the view to the user. Of course, any and all

21

transformation of data only occurs as necessary, and there may be a case where the
unformated data is called for, such as displaying all the information in a given table.

Other Considerations

Exception Definitions

An Object Not Found Exception will be thrown if the database has a row that does not
have a correlating model object. An Element Not Found Exception may occur if the
user tries to update, select, or delete an element that has not been inserted into the table but
has an existing correlating model object or if the element has already been deleted from the
table. An ITnvalid Relationship Exception might happen if the relationships were
incorrectly set at creation, were not properly updated to reflect changes made to the system,
or were not removed fully upon deletion.

Quality Attribute Characteristics

The quality attributes supported by this interface include maintainability and extensibility.
Maintainability because it moves database interaction functionality from the models to its own
layer, thus making all three layers easier to read and maintain. This form of separation of
concerns also improves extensibility because it is easy to change the mapper behaviors
without editing the model, controllers, or database.

Design Rationale

The decision to use a mapper architectural pattern for this interface was made because it
encapsulates the database interaction into a separate layer, thus making it easy to locate,
update, and maintain. It also separates out this functionality from the domain objects and the
business logic in the application controllers so that they are not calling a database interaction
method associated with an object.

6.1.3 Rationale

The design above was created to reflect modern web application design standards. MVC,
N-layered architectures, and client-server structures are the industry standard for designing
web applications. Most major frameworks (e.g. MVC .NET, Rails, etc.) use the MVC
architectural pattern as the core of their internal structures. The specific layers chosen are
based on the purpose of the system and are commonly found in other similar web
applications. They are meant to encourage separation of concerns and high cohesion in the
implementation and detailed design.

22

6.2 Process View

6.2.1 View Diagram

e N
I [=] S
Web
Browser
- i J
s i)
[Servlet [JSP Page] Tomcat
~ J
\
Data Persistence Framework
y
- /

6.2.2 Element Catalog

Client

Oracle SQL
Database

Client
Machine

Java
Application
Server

A client is a component that invokes services of a server component. Clients have ports that
describe the services they require. In the context of the Co-op Evaluation System, the client is

a web browser being used to access the system. The client makes HTTP requests using

RESTful web services.

23

https://www.lucidchart.com/documents/edit/5041640d-b128-40a8-ac05-4c05f5398699/0?callback=close&v=1169&s=612

Server

A server is a component that provides services to clients. Servers have ports that describe the
services they provide. The Co-op Evaluation System will be deployed on an Apache Tomcat
web server. Tomcat implements the Java Servlet and JavaServer Pages (JSP) specifications
from Oracle, and provides a Java web server environment for Java code to run in. The server
provides web services through HTTP, a TCP/IP application layer protocol.

Request/Reply Connector

Request and reply connectors are data connector employing a request/reply protocol, used by
a client to invoke services on a server. For the Co-op Evaluation System, the client and server
will communicate using RESTful web services. The client will request information from the
server using HTTP for normal requests, and HTTPS for secure transactions. In return, the
server will respond using HTTP responses.

The server will communicate with the Oracle SQL database using a data persistence
framework for mapping Java objects to database records. This communication takes place in
the form of SQL statements and stored procedures.

Client to Server

The client and server communicate with each other using a request-response messaging
pattern. The client sends a request to the server, and the server sends a response in return.
The client and server use a common language of RESTful web services, so that both the
client and server know what to expect. To handle multiple requests at once, the server uses a
scheduling system to prioritize incoming requests from clients. The server also limits how a
client can use the server’s resources in order to prevent a denial of service attack.

Interface Identity

Both the client and external APls interface with the server through the service layer. A variety
of services will be defined so that the user interface and external APls may be swapped in
and out without having to modify the business logic of the application. By defining a common
interface for each service, communication of the user interface and external APIs with the
system is kept consistent, and easily modifiable.

24

<<interface>>
Servicelnterface

Client | ﬁ
SR

External APIs ‘:-

ConcreteService Application Layer

Services Provided

Syntax

The syntax involved with using the interface requires any concrete services to implement the
service interface. Furthermore, the syntax will depend on whether it is the client
communicating with the server, or an external API. If it is the client interacting with the server,
then the communications will be RESTful-based, and objects will be sent over HTTP/HTTPS.
If the communications are taking place between the server and an external API, then data will
be transferred as a serializable Java object.

Semantics

Although the exact semantics of the interface are undefined at this time, and will be defined
during detailed design, we can provide a gist of what the semantics will look like. RESTful
web services will be defined as functions such as get(), put(), post(), and delete(), one for
each of the fixed set of four CRUD operations. Furthermore, additional functions specific to a
particular external APl may be defined as well.

Data Input and Output

As a result of user interactions with the web browser, the client sends data to the server for
processing. For example, the client may output data from the submission of an evaluation to
the server, which is then processed and stored accordingly. When the client requests data
from the server, the server responds with data to be displayed to the user. This data is sent
up as Java objects, and then converted into a format that is expected by the client, so that it
may be displayed in the user interface.

The other flow of data into and out of the client-server model is from the server to the
database, and from the database to the server. The server performs CRUD operations on the
database to request data. In return, the server responds with the requested data, which is
then mapped into Java objects through use of the DataMapper interface.

25

https://www.lucidchart.com/documents/edit/4260d442-f97d-4e12-89d2-b236411d4089/0?callback=close&v=326&s=612

Other Considerations

Possible variability with this interface is the communication protocol used for communication
between the client and the server, and any external APIs and the server. The exact
communication protocol between any external APIs and the system may be dependent on the
particular API. Additionally, instead of using RESTful web services for interactions between
the client and the server, the system could employ an XML-based web service protocol, such
as SOAP or WSDL.

In the event that an error occurs during communication, the exception will be handled
gracefully by displaying a meaningful message to the user and logging the error internally. For
HTTP-based communications that fail, the standard HTTP error codes, such as 404 and 400,
will be used.

As mentioned earlier, the quality attributes of modifiability and extensibility heavily influenced
the decision to use a service-orientated architecture. By using services to interact with
external APls, different external services may be swapped in and out with ease. Furthermore,
the user interface may be changed without having to change any underlying application logic.
Lastly, this service-based interface also supports extensibility, as new services may easily be
built off of the base interface.

6.2.3 Rationale

The client-server pattern is a common architectural model for distributed operations. The
server acts as a centralized system that can serve many clients. This pattern suits the Co-op
Evaluation System well, as this is how the current system is configured. The system itself
lives on a server provided by ITS, and users access the system through a web browser as a
clients.

Another benéefit of the client-server model is that it provides a separation of concerns.
Client-side code, such as HTML, CSS, and JavaScript, are separated from server-side code
in Java. Additionally, the client-server model allows for performance analysis and load
balancing on the server side.

The client-server model also has a few drawbacks. The server can be a performance
bottleneck, and can also be a single point of failure. However, since ITS is providing the
server resources for the system, we are not very concerned that these two drawbacks will
become major issues.

7 Acknowledgements

The Co-operators would like to acknowledge Len Bass, Paul Clements, and Rick Kazman, the
authors of Software Architecture in Practice, as well as Dr. Hawker and Professor Kuehl for
teaching Software Requirements and Architecture, from which we acquired most of our
knowledge (and the template for this document). Furthermore, the development team would
like to thank their sponsors, Jim Bondi, Kim Sowers, and the whole ITS team for their input

26

and continuing support throughout the project. Finally, the team would like to commend
Professor Malachowsky for all of his constructive feedback and endless support.

8 References

[1] Microsoft. (2009). “Chapter 16: Quality Attributes,” in Microsoft Architecture Application
Guide, 2nd ed. [Online]. Available: http://msdn.microsoft.com/en-us/library/ee658094.aspx

[2] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed.,
Westford, Mass.: Addison-Wesley, April 2007.

9 Appendices

Appendix A: Glossary

Term Definition

CES Co-op Evaluation System

DAL Data Access Layer

Evaluation Qr;(;rlr:ytehrat is currently being filled out by a student or by an

EWA Enterprise Web Applications, a division of ITS

Form A template that is used to generate an evaluation for a department

ITS Information and Technology Services

Nofification An email message that will be generated and sent to students
and/or employees.

OCSCE Office of Cooperative Education and Career Services

Report An aggregation of submissions used to display statistics

RIT Rochester Institute of Technology

SRS Software Requirements Specification

Submission A form that has been completed and submitted to the evaluator

Status The current state of the evaluation

Appendix B: Issues List

The team is using Trello to track issues; however, below you will find a high-level list of
outstanding issues with this document. If finer detail is required, please reference the team
Trello board, activity tracker, and/or Google Drive.

27

http://msdn.microsoft.com/en-us/library/ee658094.aspx

Number

Priority

Description

28

