[image: image1.png]@--

FARA Project

Document Control

Primary Owner:
Steven Coad

src9472@rit.edu
Secondary Owner:
Elaine Simone

ens6412@rit.edu
Inquiries to:
Steven Coad

src9472@rit.edu
Change History

	Published / Revised Date
	Version #
	Author

	Section /
Nature of Change

	1.0
	
	Steven Coad
	Initial Coding Standard

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Review and Approval History

Required reviewers for the document in question should be indicated by placing an "X" next to their name in the following table. In the column entitled "vote" record each reviewers vote using the following letters (shown below) to indicate their approval, disapproval or submission of changes needed to garner their approval:

A - Approved
C - Changes were submitted and shall constitute approval of the reviewer if incorporated

D - Declined (This vote requires an explanation indicating why approval was denied.)

Required reviewers who have not responded by the deadline set shall be considered to be in agreement with the contents of the document under review.

	Organization\Role
	Reviewer/Approver
	Required
	Vote

	FARA
	Jennifer Farmer
	 FORMCHECKBOX

	

	EDS
	Michelle Whalen
	 FORMCHECKBOX

	

	EDS
	John Manos
	 FORMCHECKBOX

	

Table of Contents

2Document Control

2Change History

2Review and Approval History

51.1
Headings

51.1.1
Source File

51.1.2
Class

61.1.3
Method

61.2
Declarations

61.2.1
Placement

71.2.2
Class and Interface Declarations

71.2
Indentation and Line Length

71.2.3
Indentation

71.2.4
Line Length

91.3
Comments

91.3.1
Block Comments

91.3.2
Single-Line Comments

91.3.3
Trailing Comments

91.3.4
End-Of-Line Comments

101.4
Statements

101.4.1
Compound Statements

101.4.2
Return Statements

101.4.3
If Statements

111.4.4
For Statements

111.4.5
While Statements

111.4.6
Do-While Statements

111.4.7
Switch Statements

121.4.8
Try-Catch Statements

121.5
White Space

121.5.1
Blank Lines

121.5.2
Blank Spaces

131.6
Naming Conventions

	Naming Conventions

The most important thing to remember is that variable names need to be descriptive of their role. Also, by looking at the variable name, you should be able to understand what data type the variable is. To accomplish this, an abbreviation of the data type will be at the beginning of the variable name.

For example:

String sFirstName;

int iAge;

	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

The Coding Standard
These standards were adapted from the RIT CS Department guidelines for Java and C#:

http://www.cs.rit.edu/~fyj/java-coding-standard.html

http://www.cs.rit.edu/~cs2/csharp-coding-standard.html

As well as Microsoft’s XML Documentation found at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csref/html/vcoriXMLDocumentation.asp

Headings
Source File

All source files should begin with a c-style comment that lists the class name, version information, date, and copyright notice:

/*

 * Classname

 *

 * Version information

 *

 * Date

 *

 * Copyright notice

 */

Class

The following comments will appear before the definition of every class:
/// <summary>

/// A description of this class goes here

///

/// <list type="bullet">

/// <item>

/// <term>Author</term>

/// <description>Sean Neubert (spn9006@cs.rit.edu)</description>

/// </item>

/// </list>

///

/// </summary>
The elements of a class or interface declaration should appear in the following order:

· Class (static) variables

· Instance variables

· Constructors

· Methods

· Public variables should be listed first, followed by protected, then internal protected, internal, and finally the private variables.

· Methods should be grouped by functionality.

Method

The following comments will appear before every method (including main):
/// <summary>

/// Summary of this method.

/// </summary>

///

/// <param name="name of parameter">description</param>

///

/// <exception cref="exception type">description of why it is

/// thrown</exception>

The param tag contains an attribute called name (not type) of the parameter, followed by a description of the parameter inside of the tag. The name and data type always start with a lowercase letter. The description is most usually a phrase, starting with a lowercase letter and ending without a period, unless it contains a complete sentence.

The return tag is followed by a description of the return value. Whenever possible, detailed information (such as returns -1 when an out-of-bounds argument is supplied) should be provided.

An exception tag should be included for any exceptions you throw. The exception tag has an attribute named "cref". This should contain the name of the type of exception thrown. The content of the tag should describe what conditions are present when the exception is thrown.

Declarations
Declarations per Line

One declaration per line is recommended since it encourages commenting.
int level; // indentation level

int size; // size of table

is preferred over

int level, size;

Placement

Put declarations only at the beginning of blocks. (A block is any code surrounded by curly braces "{" and "}".) Don't wait to declare variables until their first use; it can confuse the unwary programmer and hamper code portability within the scope. The one exception to the rule is indexes of for loops.

void myMethod() {

 int int1 = 0; // beginning of method block

 if (condition) {

 int int2 = 0; // beginning of "if" block

 ...

 }

}

Class and Interface Declarations

There will be no space between a method name and the parenthesis "(" starting its parameter list. An open brace "{" appears at the end of the same line as the declaration statement, and the closing brace "}" starts a line by itself indented to match its corresponding opening statement, except when it is a null statement the "}" should appear immediately after the "{". Methods are separated by a blank line.

class Sample extends Object {

 int ivar1;

 int ivar2;

 Sample(int i, int j) {

 ivar1 = i;

 ivar2 = j;

 }

 int emptyMethod() {}

 ...

}

Indentation and Line Length

Indentation

Four spaces should be used as the unit of indentation. The exact construction of the indentation (spaces vs. tabs) is unspecified. Tabs must be set exactly every 8 spaces.

Line Length

Avoid lines longer than 80 characters, since they're not handled well by many terminals and tools. When an expression will not fit on a single line, break it according to these general principles:

· Break after a comma.

· Break before an operator.

· Prefer higher-level breaks to lower-level breaks.

· Align the new line with the beginning of the expression at the same level on the previous line.

· If the above rules lead to confusing code or to code that's squished up against the right margin, just indent 8 spaces instead.
Here are some examples of breaking method calls:
someMethod(longExpression1, longExpression2, longExpression3,

 longExpression4, longExpression5);

var = someMethod1(longExpression1,

 someMethod2(longExpression2,

 longExpression3));

Following are two examples of breaking an arithmetic expression. The first is preferred, since the break occurs outside the parenthesized expression, which is at a higher level.
longName1 = longName2 * (longName3 + longName4 - longName5)

 + 4 * longname6; // PREFER

longName1 = longName2 * (longName3 + longName4

 - longName5) + 4 * longname6; // AVOID
Following are two examples of indenting method declarations. The first is the conventional case. The second would shift the second and third lines to the far right if it used conventional indentation, so instead it indents only 8 spaces.
//CONVENTIONAL INDENTATION

someMethod(int anArg, Object anotherArg, String yetAnotherArg,

 Object andStillAnother) {

 ...

}

//INDENT 8 SPACES TO AVOID VERY DEEP INDENTS

private static synchronized horkingLongMethodName(int anArg,

 Object anotherArg, String yetAnotherArg,

 Object andStillAnother) {

 ...

}

Line wrapping for if statements should generally use the 8-space rule, since conventional (4 space) indentation makes seeing the body difficult. For example:
//DON'T USE THIS INDENTATION

if ((condition1 && condition2)

 || (condition3 && condition4)

 ||!(condition5 && condition6)) { //BAD WRAPS

 doSomethingAboutIt(); //MAKE THIS LINE EASY TO MISS

}

//USE THIS INDENTATION INSTEAD

if ((condition1 && condition2)

 || (condition3 && condition4)

 ||!(condition5 && condition6)) {

 doSomethingAboutIt();

}

//OR USE THIS

if ((condition1 && condition2) || (condition3 && condition4)

 ||!(condition5 && condition6)) {

 doSomethingAboutIt();

}

Here are three acceptable ways to format ternary expressions:

alpha = (aLongBooleanExpression) ? beta : gamma;

alpha = (aLongBooleanExpression) ? beta

 : gamma;

alpha = (aLongBooleanExpression)

 ? beta

 : gamma;

Comments

Block Comments

Block comments are used to provide descriptions of files, methods, data structures and algorithms. Block comments may be used at the beginning of each file and before each method. They can also be used in other places, such as within methods. Block comments inside a function or method should be indented to the same level as the code they describe. A block comment should be preceded by a blank line to set it apart from the rest of the code.
/*

 * Here is a block comment.

 */
Single-Line Comments

Short comments can appear on a single line indented to the level of the code that follows. If a comment can't be written in a single line, it should follow the block comment format. A single-line comment should be preceded by a blank line. Here's an example:

if (condition) {

 /* Handle the condition. */

 ...

}

Trailing Comments

Very short comments can appear on the same line as the code they describe, but should be shifted far enough to separate them from the statements. If more than one short comment appears in a chunk of code, they should all be indented to the same tab setting. Here's an example of a trailing comment:
if (a == 2) {

 return TRUE; /* special case */

} else {

 return isPrime(a); /* works only for odd a */

}

End-Of-Line Comments

The // comment delimiter can comment out a complete line or only a partial line. It shouldn't be used on consecutive multiple lines for text comments; however, it can be used in consecutive multiple lines for commenting out sections of code. Examples of all three styles follow:
if (foo > 1) {

 // Do a double-flip.

 ...

}

else {

 return false; // Explain why here.

}

//if (bar > 1) {

//

// // Do a triple-flip.

// ...

//}

//else {

// return false;

//}

Statements

Compound Statements

Compound statements are statements that contain lists of statements enclosed in braces "{}". The enclosed statements should be indented one more level than the compound statement. The opening brace should be at the end of the line that begins the compound statement; the closing brace should begin a line and be indented to the beginning of the compound statement. Braces are used around all statements, even single statements, when they are part of a control structure, such as a if-else or for statement. This makes it easier to add statements without accidentally introducing bugs due to forgetting to add braces.
Return Statements
A return statement with a value should not use parentheses unless they make the return value more obvious in some way. Example:
return;

return myDisk.size();

return (size ? size : defaultSize);

If Statements

The if-else class of statements should have the following form:
if (condition) {

 statements;

}

if (condition) {

 statements;

} else {

 statements;

}

if (condition) {

 statements;

} else if (condition) {

 statements;

} else {

 statements;

}

For Statements

A for statement should have the following form:
for (initialization; condition; update) {

 statements;

}
While Statements

A while statement should have the following form:
while (condition) {

 statements;

}
An empty while statement should have the following form:
while (condition);

Do-While Statements

A do-while statement should have the following form:
do {

 statements;

} while (condition);

Switch Statements

A switch statement should have the following form:
switch (condition) {

case ABC:

 statements;

 /* falls through */

case DEF:

 statements;

 break;

case XYZ:

 statements;

 break;

default:

 statements;

 break;

}
Every time a case falls through (doesn't include a break statement), add a comment where the break statement would normally be. This is shown in the preceding code example with the /* falls through */ comment. Every switch statement should include a default case. The break in the default case is redundant, but it prevents a fall-through error if later another case is added.

Try-Catch Statements

A try-catch statement should have the following format:
try {

 statements;

} catch (ExceptionClass e) {

 statements;

}

A try-catch statement may also be followed by finally, which executes regardless of whether or not the try block has completed successfully.

try {

 statements;

} catch (ExceptionClass e) {

 statements;

} finally {

 statements;

}

White Space

Blank Lines

Blank lines improve readability by setting off sections of code that are logically related. Two blank lines should always be used in the following circumstances:

· Between sections of a source file

· Between class and interface definitions

· One blank line should always be used in the following circumstances:

· Between methods

· Between the local variables in a method and its first statement

· Before a block or single-line comment

· Between logical sections inside a method to improve readability
Blank Spaces

Blank spaces should be used in the following circumstances:

· A keyword followed by a parenthesis should be separated by a space. Example:

 while (true) {

 ...

 }

Note that a blank space should not be used between a method name and its opening parenthesis. This helps to distinguish keywords from method calls.

· A blank space should appear after commas in argument lists.

· All binary operators except . should be separated from their operands by spaces. Blank spaces should never separate unary operators such as unary minus, increment ("++"), and decrement ("--") from their operands. Example:

a += c + d;

a = (a + b) / (c * d);

while (d++ = s++) {

 n++;

}

printSize("size is " + foo + "\n");

· The expressions in a for statement should be separated by blank spaces. Example:

for (expr1; expr2; expr3)

· Casts should be followed by a blank space. Examples:

myMethod((byte) aNum, (Object) x);

myMethod((int) (cp + 5), ((int) (i + 3)) + 1);

Naming Conventions

The most important thing to remember is that variable names need to be descriptive of their role. Also, by looking at the variable name, you should be able to understand what data type the variable is. To accomplish this, an abbreviation of the data type will be at the beginning of the variable name.

For example:

String sFirstName;

int iAge;

EDS \ RIT \ FARA

Detailed High Level RequirementsCoding Standard

FARA Registry Project

Version 41.02.734	

(InputFile)

� DATE \@ "dddd, MMMM dd, yyyy" �Saturday, February 04, 2006Thursday, January 26, 2006Wednesday, January 25, 2006�

4
EDS and the EDS logo are registered trademarks of Electronic Data Systems Corporation. © 2004 EDS. All rights reserved.

5
EDS and the EDS logo are registered trademarks of Electronic Data Systems Corporation. © 2004 EDS. All rights reserved.

FARA high_level_requirements v 4.3

