
A Code Clone Oracle

Daniel E. Krutz and Wei Le
Rochester Institute of Technology

1 Lomb Memorial Drive
Rochester, NY 14623, USA
{dxkvse,wei.le}@rit.edu

ABSTRACT
Code clones are functionally equivalent code segments. De-
tecting code clones is important for determining bugs, fixes
and software reuse. Code clone detection is also essential for
developing fast and precise code search algorithms. How-
ever, the challenge of such research is to evaluate that the
clones detected are indeed functionally equivalent, consider-
ing the majority of clones are not textual or even syntacti-
cally identical. The goal of this work is to generate a set of
method level code clones with a high confidence to help to
evaluate future code clone detection and code search tools
to evaluate their techniques. We selected three open source
programs, Apache, Python and PostgreSQL, and randomly
sampled a total of 1536 function pairs. To confirm whether
or not these function pairs indicate a clone and what types
of clones they belong to, we recruited three experts who have
experience in code clone research and four students who have
experience in programming for manual inspection. For confi-
dence of the data, the experts consulted multiple code clone
detection tools to make the consensus. To assist manual
inspection, we built a tool to automatically load function
pairs of interest and record the manual inspection results.
We found that none of the 66 pairs are textual identical type-
1 clones, and 9 pairs are type-4 clones. Our data is available
at: http://phd.gccis.rit.edu/weile/data/cloneoracle/.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.13 [Software Engineering]: Reusable Soft-
ware

General Terms
Maintaining software, Reusability, Software Evolution

Keywords
Code Clone Detection, Software Engineering, Clone Oracle

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14 Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

1. INTRODUCTION
Code clones are functionally equivalent code segments.

The clones may differ in whitespace, comments and layout
(which we call type-1 clones), in identifiers and types (type-
2), or in altered and removed statements (type-3). There are
also type-4 clones, where the only conditions are to ensure
the same output for the same given input [10]. Detecting
clones may also help to find bugs, determine inconsistent bug
fixes and locate redundancies in code search results [8, 10].

There are many techniques to detect code clones [10].
When measuring the effectiveness of new or existing tools
in terms of precision, recall, or their abilities to discover dif-
ferent types of clones, we need an oracle to automatically an-
swer whether a clone found is indeed functionally equivalent
and which type the clone belongs to. Currently, researchers
either manually confirm results or compare the clones found
with the results reported by an existing tool [3,6]. The prob-
lem of such ad-hoc approaches is that different tools and
manual inspection processes may report inconsistent clones
and as a result, lead to imprecision in the evaluation. Even
worse, it can take researchers a significant amount of time
to perform such an evaluation.

The goal of this work is to create a clone oracle, which con-
sists of a set of code clones created using a mixture of human
and tool verification to increase confidence. We recruited
three experts who have experience in code clone detection
and four students who have experience in programming to
manually determine code clones for a set of function pairs.
The results from a set of leading clone detection tools are
used for helping make the consensus during manual analy-
sis. To facilitate manual inspection, we built a tool to au-
tomatically load function pairs of interest and record the
manual inspection results. This tool can be used by future
researchers to inspect the clones.

We selected three open-source programs Apache, Python
and PostgreSQL for our studies. We constructed 1536 func-
tion pairs from randomly selected classes. We identified a
total of 66 pairs of clones from the three programs, among
which none is type-1 clones, 43 are type-2 clones, 14 are
type-3 clones and 9 are type-4 clones.

The rest of the paper is organized as follows. Section 2
describes the methodology of creating the clone oracle. Sec-
tion 3 presents the data we generated, including the distri-
butions of the code clones in the three programs and clone
types. In Section 4, we discuss the limitations of the data.
Section 5 provides an overview of related work, followed by
a conclusion in Section 6.

2. ORACLE CREATION
In this section, we describe our approach of creating the

clone oracle.

2.1 Selecting Function Pairs
We aim to create an oracle of clones at the method level.

We initially constructed a set of function pairs as candi-
dates of clones. We chose three real-world programs Apache
2.2.141, Python 2.5.12 and PostgreSQL 8.53. Ideally, we
would compare each method from a program against all
other methods in the same program for clones. However,
such approach requires implausible manual effort to con-
firm clones, as the number of function pairs generated is
MethodCount ∗ (MethodCount − 1)/2. Another option is
to randomly select any two functions from the program; but
the chance where two randomly selected functions are clones
is low.

Therefore, our approach is to randomly select 3-6 classes
from each application and enumerate all the possible func-
tion pairs for the classes. Using this approach, the total
number of function pairs generated for the three applica-
tions is 45,109. We applied code clone detection tools for
all the function pairs. We then randomly selected a statis-
tically significant number (a confidence level of 99% and a
confidence interval of 5) of clones for manual studies, which
resulted in a total of 1536 function pairs, 357 for Apache,
545 for Python, and 634 for PostgreSQL.

2.2 Determining Clones
Once the function pairs are established, we ran a set of

publicly available clone detection tools, including Simcad
[12], Nicad [9], MeCC [3] and CCCD [5]. We found that
these tools are inconsistent for many of the clones detected.

We next perform manual inspection on the function pairs
to determine clones and their types. We recruited three ex-
perts who have research experience with code clones and four
students with programming experience. The experts dis-
cussed results during studies, and the clones are confirmed
only when the consensus is made. Students inspect clones
independently. We present all the manual inspection results
in our dataset. Our goal for having the two groups is to
improve the confidence of the data and present more infor-
mation for future researchers to consider. A secondary goal
is to compare how much the findings of the expert and stu-
dent groups differed from one another.

Expert Group. The expert group performs the manual
analysis without knowing the results from clone detection
tools. Then the compared results from tools to make final
decisions. There were numerous discrepancies between the
experts during the manual analysis phase. In order to help
mitigate these disagreements as to whether or not two meth-
ods are clones, or even what type of clones they represent,
results from the various tools were used by the researchers to
assist with the decision making process. Using these results
as input, discrepancies were discussed until an agreement is
made. There were cases however, where no agreement could
be made with these results being recorded as unsure in the
final result set.

1http://www.apache.org
2http://www.python.org
3http://www.postgresql.org

If several of the clone detection tools indicated a clone,
where none was noted during manual analysis, the review-
ers re-evaluated the candidate clone pair to ensure they had
not overlooked anything. The same process was used in re-
verse when the tools indicated no clone, but manual analysis
had found a clone pair. Ultimately, the final decision on a
possible clone pair was made by the researchers, not by any
tool.

Student Group. A group of four students examined the
same set of function pairs to provide a larger, more di-
verse set of results for consideration. These students are
upper division software engineering students who had no
prior experience with code clones. To help familiarize stu-
dents with code clones, they were asked to read papers by
Roy et al. [10], Kim et al. [3], and Lavoie and Merlo [6]. Fi-
nally, all students were independently interviewed to ensure
that they understood code clones at an acceptable level.

The students did not discuss their results or come to a
conclusion with other student examiners. They were not
provided with any results from clone detection tools or from
the expert group and were only asked to identify clones but
not their types.

2.3 Tool to Help Manually Inspect Clones
We developed an open source tool CloneInspection 4 to

assist with the manual clone identification process for both
the expert and student groups. This tool automatically dis-
played each of the methods to be compared and allowed the
user to select if the comparison represented a clone, and if
so, what type. Once the user finished examining a function
pair, they can easily navigate to the next function pair. In
Figure 1, we show a screen shot of the CloneInspection tool.

Figure 1: the CloneInspection tool

3. CLONES DISCOVERED
In this section, we first report the number of code clones

discovered in this study and their types. We then provide an
explanation on how the data available on our website should
be interpreted.

3.1 Clones and Their Types
In Table 1 under Expert, we show the number of clones

and clone types where the expert group makes consensuses.
Under Student, we show the number of function pairs that at
least half of the students identified as clones. Under Agree,
we list the number where the experts and 50% or above
students agree they are clones.

4https://github.com/cloneoracle/

As shown in Table 1, we discovered clones from all of the
three programs. We found 66 pairs of clones, 4.3% of the
total of 1536 function pairs examined. The majority clones
found are type-2; however, we also find a total of 9 type-4
clones. No type-1 clones were noted, which is not surprising
since developers can usually recognize exact duplications of
code and would have removed them from the software.

Under Student, we show that individual students disagree
significantly on what is a clone. If we increase the threshold
from 50% to 75% and report a clone if 75% students agree,
we would see much less clones identified by the students.
Under Agree, we see that the students agreed with 12 out of
15 pairs in Python and 33 out of 33 pairs in PostgreSQL, but
only 7 of the 18 clones in Apache. Interestingly, Python and
PostgreSQL contain type-3 and type-4 while Apache only
contains type-2 clones, which typically are considered easier
to confirm compared to type-3 and type-4 clones.

Table 1: Clones Identified in Oracle

Application Clone Expert Student Agree

Apache T1 0
T2 18
T3 0
T4 0
Total 18 23 7
Not Clone 339 334 303

Python T1 0
T2 7
T3 4
T4 4
Total 15 34 12
Not Clone 530 522 473

PostgreSQL T1 0
T2 18
T3 10
T4 5
Total 33 107 33
Not Clone 601 550 459

Total Clone 66 164 46
Not Clone 1470 1406 1208

In Table 2, we display an example of a type-4 clone in
PostgreSQL reported by an expert group and also classi-
fied by 50% of the students as a clone. The code segments
both implement the union of the two lists. The two segments
use different function names and invoked different calls, e.g.,
list member ptr in the first segment, and list member in the
second segment. The majority statements in the two func-
tions are different. None of the existing code clone detection
tools reported it as a clone.

3.2 Data Available on the Project Website
Both our tool and data are available on our website5 in

several formats including html, csv, xml and xls. Table 3
shows an example of the publicly available data. Under
Comparison, we list function pairs under study. The Expert
column displays the type of clone agreed upon by the experts
and a No if a clone was not found. The Student column
shows the percentage of students who determined the pair

5http://phd.gccis.rit.edu/weile/data/cloneoracle/

is a clone. Finally, columns Tool 1 and Tool 2 report whether
a specific tool determines if the pair is a clone. The table
includes the results for all the 45,109 function pairs collected.
Since only a subset of function pairs are selected for manual
studies, the function pairs not included in the manual studies
are left blank under Expert and Student. In addition to the
detailed results shown in Table 3, we also report 66 pairs
of code clones on the website. This value is sufficient since
most previous works have only used 4-20 clones in evaluating
clone detection tools [4, 10]

Table 3: Example Results Output

Comparison Expert Student Tool 1 Tool 2

MethA-MethB Type-1 100 % No Yes
MethB-MethC No No
MethA-MethB Type-3 75 % Yes Yes
MethD-MethE No 0 No No

4. LIMITATIONS OF THE DATA
Although our decision making process was guided in a

variety of ways, there may be clones in our dataset that
are not actually code clones, as manually determining code
clones is not a trivial task [13].

The oracle we created only identified clones at the method
level. While many clone detection tools are capable of only
identifying clones at the method level, others may find them
at a more granular level [10]. Work may be done to create
an oracle at the sub-method level.

In our studies, we did not find type-1 clones in the real-
world code. However, such data are easily generated by
adding white space and comments in the code and changing
the code layout. On the other hand, type-1 clones can be
determined by a compiler parser, and it is the types 2-4
clones that are valuable in the code clone oracle.

Finally, our oracle is C-based, meaning that the it will
be of no use to clone detection tools which analyze code of
other languages. Our technique is still very useful since a
large portion of existing detection tools are C-based [10].
We can extend our methodology to create oracles for other
languages in the future.

5. RELATED WORK
Existing code clone data either are produced using only

one tool, contain a small number of code clones, or do not
include real-world type-4 clones. Our data set is produced
with the considerations of a diverse set of clone detection
tools and manual analysis, and thus have a higher confi-
dence level. In addition, we studied over 1000 function pairs
and produced 66 pairs of clones, including real-world type-4
clones, and thus our data set is also more complete.

Krawitz [4] and Roy et al. [10] both explicitly defined
clones of all four types in a small controlled environment.
However, these works only specified a small number of clones
which were artificially created. In 2002, Bailey and Burd [2]
formed a manually verified clone data set which was used to
compare three of the leading clone techniques at the time.
This data has been criticized due to its validation subjectiv-
ity and its relatively small size. Bellon et al. [1] compared
a set of code clone detection tools using a single researcher

Table 2: An Example of Type-4 Clones from PostgreSQL

Code Segment #1 Code Segment #2

l i s t u n i o n p t r (L i s t ∗ l i s t 1 , L i s t ∗ l i s t 2)
L i s t ∗ r e s u l t ;
L i s t C e l l ∗ c e l l ;

Assert (I s P o i n t e r L i s t (l i s t 1)) ;
Assert (I s P o i n t e r L i s t (l i s t 2)) ;

r e s u l t = l i s t c o p y (l i s t 1) ;
f o r each (c e l l , l i s t 2) {

i f (! l i s t member pt r (r e s u l t , l f i r s t (c e l l)))
r e s u l t=lappend (r e s u l t , l f i r s t (c e l l)) ;

}
c h e c k l i s t i n v a r i a n t s (r e s u l t) ;
return r e s u l t ;

}

l i s t i n t e r s e c t i o n (L i s t ∗ l i s t 1 , L i s t ∗ l i s t 2)
L i s t ∗ r e s u l t ;
L i s t C e l l ∗ c e l l ;
i f (l i s t 1 == NIL | | l i s t 2 == NIL)

return NIL ;

Assert (I s P o i n t e r L i s t (l i s t 1)) ;
Assert (I s P o i n t e r L i s t (l i s t 2)) ;

r e s u l t = NIL ;
f o r each (c e l l , l i s t 1) {

i f (l i s t member (l i s t 2 , l f i r s t (c e l l)))
r e s u l t=lappend (r e s u l t , l f i r s t (c e l l)) ;

}
c h e c k l i s t i n v a r i a n t s (r e s u l t) ;
return r e s u l t ;

}

to manually verify the clones, but never publicly released all
the discovered code clones [10].

Li et al. [7] and Saebjornsen et al. [11] created a clone data
set using clones identified by software developers. However,
it is possible that developers only reported a small portion
of the clones in the system since manually identifying code
clones in a real world software system without the assis-
tance of a tool is an extremely difficult and imprecise pro-
cess. Lavoie and Merlo [6] described an automated technique
of constructing a clone data set based on the Levenshtein
metric. While this is a powerful, automated technique for
producing clones in large data sets, this is the only process
used to create the oracle and but does not generate any ver-
ified data. Their approaches do not handle type-4 clones.

6. CONCLUSIONS
Code clone detection is important for bug finding, fixes

and code search. In this paper, we describe the methodol-
ogy and data for a code clone oracle which may be used
by future researchers. The data are agreed by a group
of experts with an assistant of a set of leading code de-
tection tools. The 66 pairs of discovered code clones, the
experimental data and tool are available on our website
http://phd.gccis.rit.edu/weile/data/cloneoracle/.

7. REFERENCES
[1] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and

E. Merlo. Comparison and evaluation of clone
detection tools. Software Engineering, IEEE
Transactions on, 33(9):577–591, 2007.

[2] E. Burd and J. Bailey. Evaluating clone detection
tools for use during preventative maintenance. In
Proceedings of the Second IEEE International
Workshop on Source Code Analysis and Manipulation,
SCAM ’02, pages 36–, Washington, DC, USA, 2002.
IEEE Computer Society.

[3] H. Kim, Y. Jung, S. Kim, and K. Yi. Mecc: memory
comparison-based clone detector. In Proceedings of the
33rd International Conference on Software
Engineering, ICSE ’11, pages 301–310, New York, NY,
USA, 2011. ACM.

[4] R. M. Krawitz. Code Clone Discovery Based on
Functional Behavior. PhD thesis, Nova Southeastern
University, 2012.

[5] D. E. Krutz and E. Shihab. Cccd: Concolic code clone
detection. In Reverse Engineering (WCRE), 2013 20th
Working Conference on, 2013.

[6] T. Lavoie and E. Merlo. Automated type-3 clone
oracle using levenshtein metric. In Proceedings of the
5th International Workshop on Software Clones, 2011.

[7] J. Li and M. D. Ernst. Cbcd: cloned buggy code
detector. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pages
310–320, Piscataway, NJ, USA, 2012. IEEE Press.

[8] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner:
Finding copy-paste and related bugs in large-scale
software code. IEEE Trans. Softw. Eng.,
32(3):176–192, Mar. 2006.

[9] C. K. Roy and J. R. Cordy. Nicad: Accurate detection
of near-miss intentional clones using flexible
pretty-printing and code normalization. In Proceedings
of the 2008 The 16th IEEE International Conference
on Program Comprehension, 2008.

[10] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison
and evaluation of code clone detection techniques and
tools: A qualitative approach. Sci. Comput. Program.,
74(7):470–495, May 2009.

[11] A. Saebjornsen, J. Willcock, T. Panas, D. Quinlan,
and Z. Su. Detecting code clones in binary executables.
In Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, ISSTA
’09, pages 117–128, New York, NY, USA, 2009. ACM.

[12] M. Uddin, C. Roy, and K. Schneider. Simcad: An
extensible and faster clone detection tool for large
scale software systems. In Program Comprehension
(ICPC), 2013 IEEE 21st International Conference on,
pages 236–238, 2013.

[13] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and
A. Lakhotia. Problems creating task-relevant clone
detection reference data. In Proceedings of the 10th
Working Conference on Reverse Engineering, 2003.

