
Software Citation Tools
Overview of Software Development

Process and Methodology
Latest Revision: 2017-05-16

Team ForCite:
Eric Lee

Rob Lowe
Sam Mosher
Colin O'Neill

Methodology
This project will develop a suite of related tools using an iterative and incremental development
methodology with evolutionary prototyping. Each full process iteration will result in the creation
of a stable deliverable. This deliverable may be an initial working prototype of a tool, to be built
upon in future iterations, or a new, stable version of an existing tool with additional features. By
utilizing this evolutionary prototyping approach, the team hopes to get early and frequent
feedback from the community in order to develop a suite of tools that provides the highest
degree of value.

Each process iteration will consist of four phases: requirements gathering, analysis and design,
development, and deployment. These phases will exist as general guidelines driving the
development of the software. They will not be considered discrete or immutable: some overlap
of phases may occur, and even past iterations may be revisited. In particular, the requirements
gathering and development phases shall be largely ongoing across multiple iterations.

The decision to treat these phases as ongoing comes from the project's central goal of fostering
a community of collaborators and contributors. The team wishes to reduce the barrier to
contribute to this project as much as possible. By allowing outside collaborators to provide
feedback and insight into the requirements at any point, and by allowing potential contributors to
develop code for any past or present iteration, the team hopes to engage these external
contributors early and encourage their long-term involvement with the project, rather than asking
them to withhold their potential contributions until the proper development phase, and risk losing
their interest in the project. The development process was chosen with consideration of this
asynchronous methodology.

Requirements Gathering
During the requirements gathering phase, the team will elicit requirements from the community
using open questions, interviews, discussions, bug reports, and feature requests. In early
iterations, the focus will be on gathering requirements via open questions, interviews, and
arranged discussions. In later increments, focus will switch to gathering requirements via more
passive, unsolicited channels: bug reports, feature requests, and spontaneous discussion within
the community.

Analysis and Design
During the analysis and design phase, the team will analyse the information gathered from the
community, sort it into more structured requirements, and determine which requirements are
relative to the release for the current iteration. These will be grouped together as a "milestone"
with an estimated delivery date. Requirements that are determined not to be part of the current
increment will still be added to the backlog with low priority, allowing external contributors to
contribute to those features at any time.

Development
During the development phase, the team will implement features in small increments. These will
add up to a stable version of the tool with the features determined in the previous phase. The
development process is described in greater detail in the "Development Process" section below.

Deployment
During the deployment phase, the addition of features to the tool will be halted (development
efforts may continue concurrently, but the merging of new features will be temporarily put on
hold). The team will perform dynamic black box testing on the current version of the code base.
Any defects found and determined to be unacceptable for the deliverable will be fixed. When the
deliverable is approved by all team members, it will be released.

Development Process
The development process will utilize Git and GitHub to track work, allow multiple developers,
including external contributors, to work concurrently, and organize development and released
versions of the tools.

Work Tickets
Work tickets will be tracked as GitHub Issues. Each work ticket will include a description of the
feature to be added or problem to be solved, blockers or dependencies (e.g. other tickets), and
potential risks (if applicable). Each ticket will be labeled to indicate its current status.

Ticket Creation
New tickets can be created by the team at any time. These new tickets should have a "Not
Ready" label placed on them, indicating they have not been reviewed and approved by the
team. Other contributors can also propose tickets as either bug reports or feature requests, and
will also be marked "Not Ready" until the team formalizes and approves them. Other members
of the team peer review the tickets, discussing whether the description adequately describes the
expected functionality, whether all blockers and risks are accounted for, and whether the
complexity of the ticket is appropriate. When a team member believes the ticket is ready, they
approve it. Once two team members approve the current version of a ticket, it may be labeled
"Ready". Tickets that have blockers can be labeled "Ready", but should also be labeled
"Blocked", indicating that they will be ready as soon as their blockers are resolved.

Development
The highest priority unblocked tickets should be developed first. When a developer wishes to
work on a ticket, they assign themselves to the ticket. When work is complete, the developer
should issue a pull request against the development branch of the project. Developers are
responsible for resolving merge conflicts before issuing a pull request, and pull requests should
therefore always be fast forwards. The easiest way to achieve this is to develop in a feature
branch and rebase the changes onto an up-to-date development branch before issuing the pull
request (see "Git Workflow" below). Static white box testing in the form of peer review will take
place. Other developers may discuss the changes and ask questions, and the developer issuing
the pull request may tweak the pull request in response to this discussion. When the same
version of the pull request receives approval from two team members (potentially including the
developer, if they are a team member), it may be merged into the development branch of the
project. The ticket should then be labeled "Done".

Figure 1: Ticket Lifecycle

Deployment
After all planned features for a release are completed, the development branch is frozen, that is,
no pull requests are merged (pull requests may still be issued, and reviewed, but should not be
merged). The team shall perform dynamic black box testing to verify the release. Once the team
is satisfied that no unacceptable defects are contained in the codebase, the development
branch will be merged to the release branch, the release will be tagged, and the development
freeze will be lifted.

Git Workflow
The following is the recommended Git workflow for working with this project.

Preparing the dev environment:

1. Fork the Development branch of the project to your personal GitHub
2. Clone the Development branch from your personal GitHub to your local machine
3. Branch the development branch on your local machine to a feature branch

Developing:

1. Perform development work on the feature branch
2. Periodically pull from the project's development branch to your local development branch

and rebase your feature branch onto the up-to-date development branch
3. Push your feature branch to your personal GitHub to synchronise development between

machines, publically discuss implementation with colleagues, etc.

Merging:

1. Make sure you have rebased your feature branch onto an up-to-date development
branch (step 2 of Developing)

2. Squash commits related to this feature into one "feature commit" (if you would like to
keep granular changes, branch your feature branch before squashing)

3. Push your feature branch to your personal GitHub
4. Issue a pull request from your personal GitHub's feature branch to the project's

development branch
5. If changes are necessary to get the pull request accepted, make them on your local

feature branch, and push them to your personal GitHub (remember to squash your
commits). GitHub will automatically update your pull request.

Figure 2: Git Workflow

