Project Plan
Trillium Health Bluetooth Event Tracker

Team : Gimball3000 - Danielle Neuberger, Randy Goodman,
Anshul Kapoor, Tyler Schoen

Sponsor: AJ Blythe

Advisor: Rick Weil

Table of Contents

1. Overview
2. Document Organization
3. Goals & Scope
3.1. Goals
3.2. Non-Goals
4. Technical Process
4.1. Methodology
4.2. Tools and Techniques
4.3. Internal Artifacts
5. Deliverables
6. Risk Management
7. Scheduling and Estimates
7.1. Project Schedule
7.2. Work Breakdown Structure
7.3. Resource Allocation
7.4. Estimates
7.5. Tracking and Schedule Changes
8. Measurements and Metrics
9. Appendix
9.1. Project Plan Doc Additional Info/Resources
9.2. References

1. Overview

Trillium Health Bluetooth Event Tracker is web and mobile application to be used for tracking
bikers during the annual Trillium Aids Red Ribbon Ride racing event. This is a week long charity
racing event held around the finger lakes region, NY where bikers race to raise funds for aids
research. The core functionality of this application relies on bluetooth low energy devices
(beacons) that enables race staff to automatically know when bikers pass by the checkpoints.
The application also allows support staff to update the status of each biker (when help is
needed). Another key functionality is to store offline data regarding each biker and sync it with
the servers, once stable internet connection is available.

The team has meet with the customer and the agreed solution is an iOS application integrated
with the bluetooth devices, as well as an accompanying web application, both of which serve
different purposes. The web application will focus on user data from administrative perspective,
and any participant features like personal pages and social integration, whereas the iOS
application will be carried by race staff and will be used for in-race features, such as to receive,
log, and display participant updates. The application will also be generalized to allow for other
types of races besides the initially agreed upon event race tracking.

This app will be supported on iOS platform, while a web version will be available for race
administrators.

The end customers of the application are the management staff who help run the event. This
includes SAG (Support, Assistance, Gear) crew, admin staff and others who help manage the
event. The staff can communicate with each others using the application, and also check on the
position of bikers. Competitors will also be able to see various statistics regarding their trip and
share this information with potential donors.

The entirety of the project in an agreed-upon scope will be completed within the time frame of
RIT’s fall and spring semesters, which run from August until May. The team will schedule
features and milestones appropriately with signoff from the project sponsor in order to complete
the project during the time frame, and will need to account appropriately for breaks, days off,
and risks such as team members becoming sick, all of which affect schedule.

The team consists of diverse skill sets and following is a breakdown of the roles:
Randy Goodman: Database and Server API

Anshul Kapoor: Server API & iOS dev.

Danielle Neuberger: Project Management

Tyler Schoen: iOS & front-end dev.

Development responsibility will be shared among all team members, but team members will
have some specialization according to the roles listed above.

2. Document Organization

This document is meant to provide a detailed view of the various aspects of the Trillium
Bluetooth Event Tracking project. It covers everything from project scope to risks, from schedule
to metrics, and many other helpful aspects.

Certain sections of this document use Periority values to convey importance of certain
features/goals. The priority values are on a scale of P1 to P3. An explanation of the priority
values follows:
e P1is the topmost priority and is absolutely necessary for a viable product. Without these
items, the product should not be released.
e P2 items are important and impact quality of the product, but the product would still be
shippable without items in this category.
e P3items are nice to have but can be dropped if necessary. They are not required for a
quality shippable product. This category includes enhancements.

Other tables in some sections may use different measurements related to their specific purpose
or topic (i.e. the risk scoring table contains impact and probability values). The values for those
tables will be defined in a description directly above the table.

3. Goals & Scope

Goals provide the primary objectives for the project and help define the scope. The following
two sections specify this project’s prioritized goals and a series non-goals with explanations, in
order to clarify scope, intentions, and direction of the project.

3.1. Goals

Goal Priority

1 Ensure participants’ safety during their activity P1
1.1 Provide biker check in/check out P1
1.2 Provide details of biker’s status P1
1.3 Estimate biker location/arrival information P2
2 Provide beacon tracking in a standalone fashion, and capability to P1

share that information over cellular networks as available

3 Support concurrent events P1

4 Allow staff to efficiently communicate with each other P1

5 Enable the system to be configured for a variety of different event P2
types

6 Provide means for event promotion P3

3.2. Non-Goals

Defining non-goals clarifies the scope of the project by specifying attributes or functionality that
are not in the scope of the project. The following table defines these non-goals and provides
explanation as to why they are excluded for the project.

Non-Goal Reasoning

1 Virtual races The main goal of the product is ensuring participant safety on a
physical, centrally located racecourse.

2 Continuous tracking Beacons are tracked only when proximal to a tracking device.

3 Fundraising Focus This is not a fundraising event!

4 Route Creation It's not meant to alter race routes (MapMyRide can do that),
and it would be a separate project in its own.

5 Race Timing Its meant to estimate the ETAs of racers, not time them.

4. Technical Process

4.1. Methodology

In selecting a software development methodology, our team considered the gamut of options.
Our thoughts on some of the methodologies are enumerated below:

e Waterfall - May not be adaptive enough for our needs.

e Modified Waterfall - Phases can overlap, but still not much room to add additional
features or modify existing work.

e Evolutionary Prototyping - Requirements are pretty well defined, enough so that
evolutionary prototyping would be a waste of team effort.

e |terative/Incremental Model- Viable choice given the how the requirements are broken
down into set objectives. Potentially may not be adaptive enough for the beginning
stages of the development cycle since rigid and phases cannot overlap.

e RUP - May be too heavyweight since most of the requirements and objectives are
already laid out. However, this methodology has the design completed upfront and then
an iterative approach integrated later. This may not be light enough to adjust to early
stage changes.

e Agile - May be unnecessarily light, requirements have been laid out at the beginning of
the project and should not change all that much.

e Spiral - Seems like the right approach for a project with such requirements, but may be
a little heavy on the risk analysis and risk management process. However, that may not
be a con.

e V-model - Emphasises on testing, which isn’t a con. However, it may not be adaptable
as we need in the later stages of development.

e XP - Unnecessary and too lightweight for the needs of this project.

From the above discussion it can be seen how each methodology would fit into this specific
project, our team ended up deciding to use the Spiral Methodology. The Spiral Methodology is a
methodology focused on risk management that combines elements of iterative and prototype
models. This will allow us to plan, analyze, and implement individual objectives laid out and
gathered through the project proposal. Some pros of spiral are that it is relatively flexible,
especially when compared to more rigid model such as waterfall. It also has risk management
built-in, and estimations become more accurate as the project moves forward. This will allow us
to easily plan for the requirements laid out for us as well as quickly gather unforeseen
requirements and adapt to them. Additionally, prototypes are developed in each iteration so
there is high visibility and customer feedback can be easily gathered and incorporated.

However, there are also some cons in choosing Spiral that we should take into account.
Reviewing and evaluating the project after iterations, requires experience and expertise. It's also
worth noting that in order for Spiral to be effective it is imperative that all rules of the
methodology are followed, this can be tough throughout the lifespan of the project. Also, the
amount of documentation required at the beginning and intermediate stages of the project is

fairly large compared to some other models. This can make project management complicated if
this documentation is not managed properly.

The team will implement the Spiral Methodology in month-long iterations, which will provide for
approximately four iterations per semester. Given that each iteration has four stages, the team
has agreed month-long iterations should provide enough time to go through each stage and not
feel rushed. This schedule will be evident and documented in the project schedule, which will be
managed in the team Google Drive.

4.2. Tools and Techniques
e Version control - git
o This one was an obvious choice as the majority of the team has experience with
git, this also allows us to easily host our code in a private repo on Github.

e Project information website - Github Pages
o Coupled with git/Github, Github pages makes it extremely easy to manage a
project website without all the hassle of handling HTML and CSS.
o The Github Pages site will be periodically migrated to the official team website on
the SE domain - http://www.se.rit.edu/~gimball3000/

e Scheduling software - Gantter

o Gantter is a project management application that integrates nicely with Google
Drive, which was one of the primary reasons for selecting it over Microsoft
Project. If necessary, it can also import and export to MS Project as well. It
contains tools for schedule management including a Gantt chart and WBS, as
well as resource management. It also has tools for team member/project
calendars and risk management, but our team will not be utilizing those because
they are not robust enough.

e Team Communication - Slack
o Slack is a great tool for convenient, professional team communication that also
provides exceptionally useful tools for project management and development as
well as service integration.

e Task Management - Trello
o Trello is a simple and easy to use task management tool that integrates with
Slack. This will provide the team with a central location to track, update, and
manage tasks for each iteration of the project.

e Documentation Storage/Management - Google Drive
o Google Drive is the most convenient documentation storage service used among
the team. Google Drive allows for easy document creation, organization, and
history , which exactly what we want for managing our project documentation. A

7

http://www.se.rit.edu/~gimball3000/

primary driver for using Google Drive/Google Docs is the capability to have
multiple team members editing files in real-time and communicating using the
chat feature.

e Continuous Integration - Jenkins
o Jenkins will be used for Continuous Integration because it has such large
popularity in the development community that many team members have used it
before. It also integrates with Slack for updates.

4.3. Internal Artifacts

As part of our decision to use the Spiral Methodology, our team will be creating the following
internal artifacts:
e SRS (Software Requirements Specification) - outlines the requirements; will be kept up
to date and maintained
e Prototypes - completed each iteration at the end of the risks phase and used to identify
and resolve critical risks before moving on to the development phase
e Software Architecture Document - specifies the software architecture including physical
and logical elements and their relationships, as well as any COTS (Commercial
Off-The-Shelf), open source, or reusable software components. Will incorporate some
diagrams.

5. Deliverables

Deliverables are derived from the required senior project deliverables, project-specific
requirements, and deliverables mandated by our chosen process. Reference section 7 for
process details, and section 5 for information related to schedule of deliverables and the project
overall.

At a high level, major deliverables for the project include:

e Project Planning document (this document) - Will contain information including but
not limited to overview, goals, scope definition, risks, scheduling, and process
methodology definition.

e Project website - This will contain information about the project, including all
non-proprietary work products and artifacts.

e Domain model - Will be used to describe and demonstrate an understanding the
application domain.

o Weekly four-up charts - These will be reviewed at the beginning of each weekly
meeting and will be used to gauge status and project progress.

e Time tracking - Time/effort worked will be tracked by each team member and then
aggregated weekly to be recorded on the project website.

e Select process/product metric tracking - Every two weeks or team will track and
provide updates on the website for at least two process/product metrics. This will provide
a progressive view of the project and allow us to concentrate on improvement.

Interim and final project presentations - Will be used to provide midpoint and final
status/progress information, as well as to explain and receive feedback on project
approach and execution. Team members will additionally attend other teams’
presentations and provide feedback.

Final project poster and presentation - This formal presentation will be used to
present our work once completed to raise awareness and receive feedback from others.
Technical report - Will present a comprehensive technical view of the project.

Interim and final team self-assessments - These will be used to gauge progress and
participation of each team member.

Post-mortem reflection report - Will provide a means to reflect on the project, team’s
strength and weaknesses.

CD containing project artifacts - Will contain artifacts related to the project to be
delivered to the customer.

Individual senior project survey - Used by the software engineering faculty for future
senior projects.

From Spiral Model:

SRS (Software Requirements Specification) - outlines the requirements; will be kept
up to date and maintained

Prototypes - completed each iteration at the end of the risks phase and used to identify
and resolve critical risks before moving on to the development phase

Software Architecture Document - specifies the software architecture including
physical and logical elements and their relationships, as well as any COTS (Commercial
Off-The-Shelf), open source, or reusable software components. Will incorporate some
diagrams.

6. Risk Management

Risks are managed in a separately maintained Google Sheets file on the project Google Drive,
which can be found here. In the file each risk has a succinct name along with the following
attributes.

Probability is a percentage value from 0-1, which is the chance of the risk occurring.
Impact three value options (low, medium, or high), which corresponds to the effect (of
the risk) on the project overall.
o Low impact : if the risk does occur, the impact is minimal and manageable.
o Medium impact : the occurrence of the risk will not stop progress completely, but
may affect the performance in future.
o High impact : the project would be hugely affected if the risk occurred, and it
would result in an un-shippable product.
Exposure value is a number calculated using the probability multiplied by the impact
value (the impact values of low impact is a value of 1, medium is 5, and high is 10).
Using risk exposure, the risks can be prioritized so the team can focus on more
important risks.

https://docs.google.com/a/g.rit.edu/spreadsheets/d/1RZj4QRBK8oS8tHpq3-ChJz_1bGY4wCbq-ApdXgtth-g/edit?usp=sharing

e Classification of risks for the table are drawn from a suggestions from a few academic
papers, including (2.1), and (2.2). The resulting category options for our table are:
requirements, costs, quality, and scheduling. If a risk fits into multiple categories, its
category will be the one it fits into best.

e Owner associated with each risk is the assignee responsible for ensuring the risk is
prevented and then mitigated and managed if necessary.

Mitigation plan for each risk details our team’s plan to prevent the risk from occurring.
Management plan for each risk explains our team’s for minimizing impact of the risk
should it occur.

e Status is the current status of the risk. Options include active, inactive, mitigated,
managed.

7. Scheduling and Estimates

Schedule and resources will be managed using Gantter, a project management tool that
integrates with Google Drive. The Gantter project for the team can be found in the team’s
Google Drive, as well as here.

7.1. Project Schedule

Overall project schedule is framed within the RIT fall and spring semesters time frame,
accounting for breaks and days off. The schedule also attempts to account for risks and
unexpected changes. It has been created around the Spiral Methodology of development (see
the Technical Process section) and includes deliverables and schedule items related to the
methodology. For an example and clarification, see the initial static schedule screenshot below.

The project schedule will be managed within Gantter.

A static initial schedule is below for reference. This includes only some initial tasks and first
couple iterations since following iterations depend on the requirements document being made in
the first iteration.

Because the schedule is so detailed, it may not be readable as depicted here. In order to see
more detail, please reference the source Gantter schedule file in the team’s Google Drive
mentioned before, which can be found here.

10

https://drive.google.com/a/g.rit.edu/file/d/0B8wVwVWZtDzCRk85Q2R3QUh6ZkE/view?usp=sharing
https://drive.google.com/a/g.rit.edu/file/d/0B8wVwVWZtDzCRk85Q2R3QUh6ZkE/view?usp=sharing

"

!

The Gantt chart close-up:

t I
R

7.2. Work Breakdown Structure

The Work Breakdown Structure, or WBS, shows a hierarchical view of high level tasks in the
project and highlights their relationships to one another.

The WBS will be managed in Gantter, but a static initial WBS created for version 1 of this
Project Plan is below for reference. This again only includes the initial tasks created and the first
couple iterations, since defining following iterations depends on creation of the requirements
document.

11

L =0
|

=alnw
E

i {0
| il s

i:: u::i:ii il A RaEE l:]
[

0 B R ML 8 W
]

=_=.I= 'li.'lll wlall Eiwl

Waled W W W

bl ul

el &l Wale M & Wal

wWial MW w

il &l wl

R R R R A } KLy q!

i

12

7.3. Resource Allocation
All resources will be managed in Gantter.

Available personnel resources are limited to the current team members, which include Anshul
Kapoor, Danielle Neuberger, Tyler Schoen, and Randy Goodman.

Hardware resources include the limited number of bluetooth beacons the project sponsor has
brought to share with the team for testing purposes, as well as any iPads or mobile devices the
sponsor provides for testing. The team will additionally be using our own personal
laptop/desktops and mobile devices for testing purposes.

Software resources include licenses provided by the sponsor, such as the private Github
repository.

7.4. Estimates

Estimations will be done in Gantter and in the Requirements document created after spiral
model iteration 1. Estimations will include team effort/time estimation as well as product size
(function points).

7.5. Tracking and Schedule Changes
All tracking and schedule changes will be managed within the Gantter project.

8. Measurements and Metrics

Measurements and metrics are recorded and managed in a separate Google Sheets file in our
project’'s Google Drive, which can be found here.

Measurements are data points that can be gathered from the project in order to create metrics.
Measurements by themselves have no real value and require metrics in order to be given
significance. Each measurement in the file has a measurement name, description, and
significance.

Metrics use measurements and make them meaningful by providing information that is useful,
actionable, provides an indication of something, or shows some trend that can be useful for
predictions. Each metric in the file has a metric name, associated measurements, and an
explanation of its significance.

9. Appendix

9.1. Project Plan Doc Additional Info/Resources
“ Project Plan Guidelines

13

https://docs.google.com/a/g.rit.edu/spreadsheets/d/1P3wV7OeCHVO-vekL_R6J9Ewl8oxizOG5TAoGJavNZ-o/edit?usp=sharing

A project plan is the most important, yet often neglected artifact for the typical software
development project. A project plan is a sufficiently complete, professional document for
communicating information to software engineers and management needed to understand what
the project entails, how it will be produced and controlled and what the effort and schedule
estimates are for the project. The project risks, quality focus, and support needs are specified as

well.
References:

e Rapid Development by Steve McConnell (available on Books 24x7) see Chapter Seven

for background on software development life-cycle models.

e Construx Software templates & examples (Steve McConnell's company) see
"Engineering Management Section". Note that you will need to create a free login for this
site. There are many very useful document templates and checklists available here.
Planning and tracking spreadsheet

Risk management spreadsheet

As part of the Microsoft Academic Alliance, you may download a free copy of Microsoft
Project. “

9.2. References
1. Methodologies

1.1.

1.2.

1.3.

1.4.

1.5.
2. Risks
2.1.
2.2.
2.3.

24.

http://www.slideshare.net/RiantSoft123/different-types-of-software-development-
model
https://melsatar.wordpress.com/2012/03/15/software-development-life-cycle-mod
els-and-methodologies/

http://www.ijcsi.org/papers/7-5-94-101.pdf
https://docs.google.com/viewer?url=http%3A%2F %2Fwww2.engr.arizona.edu%?2
F~eced473%2Freadings%2F2-Comparison%25200f%2520Software%2520Develo
pment%2520Methodologies.doc
http://www.ijarcsse.com/docs/papers/May2012/Volum2_issue5/V21500405.pdf

http://www.academia.edu/573832/Classification_and_Analysis_of Risks_in_Soft
ware_Engineering
http://project-management.com/understanding-the-4-types-of-risks-involved-in-pr
oject-management/
http://www.mitre.org/publications/systems-engineering-guide/acquisition-systems
-engineering/risk-management/risk-impact-assessment-and-prioritization
http://www.sersc.org/journals/IJSEIA/vol7 _no1_2013/5.pdf

14

https://ezproxy.rit.edu/login?url=http://library.books24x7.com/library.asp?%5EB
http://www.construx.com/cxone/basic/map.php
http://www.se.rit.edu/~swen-561/ProjectResources/ActivityTracker.xlsx
http://www.se.rit.edu/~swen-561/ProjectResources/RiskManagement.xlsx
http://www.slideshare.net/RiantSoft123/different-types-of-software-development-model
http://www.slideshare.net/RiantSoft123/different-types-of-software-development-model
https://melsatar.wordpress.com/2012/03/15/software-development-life-cycle-models-and-methodologies/
https://melsatar.wordpress.com/2012/03/15/software-development-life-cycle-models-and-methodologies/
http://www.ijcsi.org/papers/7-5-94-101.pdf
https://docs.google.com/viewer?url=http%3A%2F%2Fwww2.engr.arizona.edu%2F~ece473%2Freadings%2F2-Comparison%2520of%2520Software%2520Development%2520Methodologies.doc
https://docs.google.com/viewer?url=http%3A%2F%2Fwww2.engr.arizona.edu%2F~ece473%2Freadings%2F2-Comparison%2520of%2520Software%2520Development%2520Methodologies.doc
https://docs.google.com/viewer?url=http%3A%2F%2Fwww2.engr.arizona.edu%2F~ece473%2Freadings%2F2-Comparison%2520of%2520Software%2520Development%2520Methodologies.doc
http://www.ijarcsse.com/docs/papers/May2012/Volum2_issue5/V2I500405.pdf
http://www.academia.edu/573832/Classification_and_Analysis_of_Risks_in_Software_Engineering
http://www.academia.edu/573832/Classification_and_Analysis_of_Risks_in_Software_Engineering
http://project-management.com/understanding-the-4-types-of-risks-involved-in-project-management/
http://project-management.com/understanding-the-4-types-of-risks-involved-in-project-management/
http://www.mitre.org/publications/systems-engineering-guide/acquisition-systems-engineering/risk-management/risk-impact-assessment-and-prioritization
http://www.mitre.org/publications/systems-engineering-guide/acquisition-systems-engineering/risk-management/risk-impact-assessment-and-prioritization
http://www.sersc.org/journals/IJSEIA/vol7_no1_2013/5.pdf

