Architecture Overview
RIT Online Learning
Peer Evaluation System
Version 1.0

Prepared by:

Team Green Apple

23 May 2006

Revision History

	Name
	Date
	Reason For Changes
	Version

	Tom Nichols
	05/23/06
	Initial Creation
	1.0

	
	
	
	

1. Project Structure

The system is designed to be highly flexible and modular, with low coupling between components. At a very high level, the system is broken down into three packages and a supporting library: Util, Data, Business, and Web. Each package is built as a separate library (also known as an “assembly” or DLL), and has a separate Visual Studio Project.

Each package strives to remain agnostic of the environmental details handled by the other packages. For example, the Web and Business components are not concerned about the persistence mechanism handled by the Data package. Similarly, the Business and Data packages would be just as well suited to a rich client system, if a Windows Forms UI implementation was substituted for the Web package.

2. Package Details
The packages are oriented in a hierarchy, so that dependent packages are lower in the hierarchy. This allows specific implementations can easily be added in the higher level packages, and core implementation changes in lower level packages will easily propagate throughout the system. Below is a diagram of the package hierarchy:

[image: image1.png]

[image: image2.png]QlDisposable

eway

ameter()

nsaction()

2.1. Util Package
The Util package provides support for miscellaneous tasks that aren’t specific to any of the other three core packages.

The most important functionality provided is in the Util.Data namespace. This subsystem provides a framework for database provider independence. It abstracts away the specific provider API and relies on the base ADO.NET interfaces. The specific data provider implementation (either MySQL, MS SQL, or ODBC) can then be specified as a runtime setting. It is also possible (though not built- in) to support any data provider that conforms to the Microsoft ADO.NET model - PostgreSQL, Firebird, Oracle, etc. This package also defines a framework for mapping resulting data in a highly object- oriented fashion (the DataObjectMapper).
The Util package also provides a framework for specifying settings that can be defined at runtime, and stored in an XML file. The Settings framework provides a simple mechanism for defining all properties needed for each library. This is how the runtime data provider is specified.
2.2. Data Package

[image: image3.png]ager
(uid, pass, i)
\ttempted
Succeeded
Failed

1
\

OfPrincipal

DataObjectGateways. Dataobjects

This package encapsulates the mechanism used for data persistence (usually using SQL and the Util.Data or ADO.NET libraries). The model used separates the data representation (DataObjects) from the data manipulation (DataObjectGateways). Figure 2.2 shows the components of the Data library, and their usage of the DataProvider and DataObjectMapper.
2.3. Business and Web Packages

The Business package provides a logical location for defining how the data is manipulated. This package also includes the necessary components for interfacing with the OpenLDAP and MyCourses systems. These actions are triggered by calls from the Web package, where all work is initiated.
The Web package is built upon the Microsoft ASP.NET model. All web pages extend from Microsoft’s System.Web.UI.Page, and consist of custom UserControls.

3. Installation

Setup and installation of the PeerEval system should be straightforward to someone who is familiar with the Microsoft technologies involved. This includes IIS, MS SQL Server, and Windows Server administration.

3.1. Web Server Setup (IIS)

A virtual directory needs to be created to point to the Web folder, where the web pages reside. This virtual directory needs to be configured to host an ASP.NET 2.0 application. The anonymous web user (IUSR_COMPUTERNAME) needs to be given read access to the web folder. The ASP.NET user (ASPNET) needs read access to Web, Web/bin, and it needs read/write/modify access to the web/log folder. Note that logging functionality is not fully supported by log4net under the ASP.NET 2.0 model, but does not affect performance of the system in any way.
3.2. Database Setup

To set up the database, a new database needs to first be created in the Microsoft database manager. Then the file data/db.sql may be run to create the tables. Note that the two views at the bottom of the script must be created separately. Also, “mixed mode” authentication should be used for database access. DO NOT use the ‘sa’ user to as the Peer Eval system’s database access. This is an extreme security risk in any application. Instead, create a new database user specifically for the Peer Eval system, and take note of the user name and password to use in the connection string. The new database user needs read/write/create/update access to the database.
3.3. Settings Files

Each library has a corresponding setting file, with the same name as the library, i.e. PeerEval.Web.dll has a settings file named PeerEval.Web.xml. The settings file must also reside in the same directory as the library (typically web/bin). Note that these files must be valid XML.

3.3.1 PeerEval.Util.xml

This file defines the database connection string, and the data provider class name.

3.3.2 PeerEval.Business.xml

This file defines the IAuthManager class name.

3.3.3 PeerEval.Web.xml

This file defines whether debug mode is turned on. If it is, error messages will include a full exception stack trace, viewable to the end user.
Figure 2.2

Figure 2.1

Figure 2.3

