
University of Alabama Computer Science Technical Report TR-2002-05 2002 September 9 p. 1

Integrating Process, Product, and People Models
to Improve Software Engineering Capability

J. Scott Hawker
University of Alabama

hawker@cs.ua.edu

Abstract

We present a software engineering model that
integrates three important elements: software product
components, software process components, and people.
We focus on ways these three elements should be
integrated to provide a foundation for process execution
and product engineering tools that improve software
engineering capability.

1. Introduction

We seek to provide tools that enable people
performing software engineering processes to produce
software products that are of value to their customers. A
key enabler of these tools is an underlying model that
integrates people, processes, and products. The tools
instantiate, navigate, and manipulate this integrated
model. Tools based on such a model will significantly
enhance the engineering capability of organizations
developing large-scale, long life-cycle products from
reusable and evolving software components and product-
line architectures.

1.1. A scenario

Consider a new project at a software development
organization called BiggerSoft. A small software
engineering team receives a task to develop a module in a
larger system. BiggerSoft uses a process execution
environment, PXE, which guides the developers through
the software engineering process and captures the results.
PXE gives the developers access to artifacts that scope
their task, including the overall system vision document,
system requirements, system architecture, and the initial
draft of the requirements for their module. PXE suggests
that they begin a pair of activities, one to further develop
the requirements and one to define a feasible software
architecture for their module. PXE provides guidelines,
document templates, examples of other requirements and
architectures, relevant architecture styles and design

patterns, and additional guidance to aid the developers in
carrying out their tasks.

PXE suggests tasks and guidance that are consistent
with BiggerSoft’s adopted software engineering
processes, and it allows process tailoring and
configuration to meet the specific needs of the project at
hand. The developers tailor and accept these activities
and the corresponding types of product artifacts and
engineering techniques they will use. PXE then
instantiates and initializes objects that capture these new
process activities and provides facilities for capturing
activity progress, risks, and issues.

PXE is integrated with PDE, the integrated product
development environment for BiggerSoft’s developers.
Indeed, PXE and PDE are one system of tools for
software engineering. So, in addition to instantiating
process artifacts, PXE also instantiates product artifacts in
PDE to capture the evolving product models that will
result from executing the development process activities,
and it registers these product objects with the PDE
configuration and change management tools.

As development proceeds, PXE allows the
development team to evolve their product artifacts,
capture process progress, enact new process activities
(such as document review) and sub-activities (such as
detailing a use-case description to capture detailed
requirements or developing a prototype to investigate the
use of a new technology), and make all this information
available to the development team and project
stakeholders.

Over time, PXE/PDE captures a rich, integrated
history of process activities and product models for the
newly developed software module. Even after the module
is tested, integrated with the rest of the system, and
transitioned to customer operation, PXE manages the
activities and artifacts of product support, maintenance,
enhancement, and retirement.

Because BiggerSoft’s software engineering processes
include asset harvesting and reuse, PXE provides tools
and guidance to support these activities. The integrated
history of process activities and product artifacts is a
powerful enabler of these tools. When a developer is

University of Alabama Computer Science Technical Report TR-2002-05 2002 September 9 p. 2

looking for existing solutions to use in a new project, they
may discover something relevant by searching based on
product characteristics such as similar requirements
statements, design patterns, or implementation
technologies, or based on process characteristics such as
similar development techniques, customer profiles,
development team members, or any other criteria.

Given a potential reuse match, the developer can
navigate to related information, for example, to identify
re-engineering tasks, to estimate development cost based
on the cost of previous work, to view defect reports and
fixes, to identify the engineer who designed the prior
product so they can be consulted on design modifications,
and to see what other projects have also used or
considered using the artifacts. The PXE can provide
guidance on activities and techniques for reusing the
artifacts and suggest investing additional effort to re-
engineer and package the artifacts for subsequent in-
house reuse or external sale.

BiggerSoft recognizes that their software product
artifacts are valuable assets. They have invested in

PXE/PDE to provide the processes, tools, and techniques
for capturing and reusing software components and
product-line architectures. BiggerSoft also recognizes
that the development process, itself, is a valuable asset,
and they have developed processes, tools, and techniques
for capturing the software engineering process activities
as reusable process components that can be tailored and
assembled into specific development processes that meet
the needs of their development projects. So, PXE also
provides tools and guidance to support and manage
process-engineering projects that develop, evolve, and
reuse process components and complete processes.
BiggerSoft views their process components and processes
as first-class assets, receiving all the same attention and
management control as their product components and
delivered products.

Figure 1 illustrates a portion of this scenario and
previews some of the elements of our integrated process,
product, and people model. The next sections discuss the
current state of technology in modeling, and then present
our model and the ways it integrates the three key areas.

Instantiate activities
and their guidance

Instantiate activities
and their guidance

BiggerSoft process :
Process

Instantiate activities
and their guidance

use case modeling :
Guidance

requirements review
: Guidance

The enactment engine monitors
activity goals and preconditions,
instantiating activities
accordingly

Launch
project

Develop module
architecture

Develop module
requirements

Review
requirements

lifecycle :
Lifecycle

inception :
Phase

module requirements :
Iteration

vision document :
ExternalDescription
system architecture :
ExternalDescription

moduleRequirements :
Requirements Model

actor : Actor

use case :
Use Case

description : Use-Case
Description

trace :
Dependency

review results :
WorkProduct

traces from input
WorkProducts to
output
WorkProducts

ProductProcessGuidanceEnactment

Figure 1. A portion of a development scenario supported by an integrated process and product model

University of Alabama Computer Science Technical Report TR-2002-05 2002 September 9 p. 3

2. Available modeling technology

Software engineering researchers have made
significant progress in three important areas: component-
based software products, component-based processes for
software engineering, and technologies and business
practices for software component reuse. Research and
practice in some of these areas have reached a point of
maturity such that international standards are available
which stabilize and unify the field, allowing the
integration and interoperability of standard-conforming
products. Our research seeks to integrate the results in
these three areas into a synergistic, integrated model
supporting the needs of organizations developing large-
scale, long-life software.

Product Components. There are mature software

technologies, architectures, and patterns for distributed,
component-based software products [1, 2]. There is an
active marketplace of products based on these
technologies, such as, Sun’s Java execution environments
[3], Microsoft’s COM+ and .NET environments [4], and
the Object Management Group’s CORBA family of
standards [5]. There are also powerful component
definition, design, and implementation environments for
building and managing component-based software
throughout its lifecycle. Widely-used commercial
products are available from Rational (www.rational.com),
TogetherSoft (www.TogetherSoft.com), and others.

The Object Management Group (OMG) has led the
standardization effort by providing CORBA, UML,
CORBAcomponents, and related standards in their
Model-Driven Architecture (MDA) initiatives [6].
Complementing these formal, component-based product
standards are the de facto standards represented by the
widespread adoption and use of the Microsoft COM+, and
.NET specifications [7, 4] and the Sun Java2
specifications [3]. In addition, software development
organizations are benefiting from the standardization and
adoption of domain-specific specifications of component-
based frameworks [8].

Process Components. Software engineering

processes can be characterized as assemblies of
engineering activities. The activities are presented as
reusable process components, defining and encapsulating
the process steps a software engineer performs to develop
software. Software process engineers form a specific
software engineering process by selecting, tailoring, and
assembling process components into engineering
workflows, matching the needs of a software development
project to the practices and maturity of the software
development organization.

The recently-adopted OMG Software Process
Engineering Metamodel (SPEM) [9] provides an

international standard for process engineering models.
The standard is complemented by Rational’s Unified
Process [10] and the OPEN consortium’s (Object-oriented
Process, Environment and Notation) OPEN Process
Framework (OPF) [11]. Our models closely align with
SPEM, but further work is necessary to align them with
the most recent SPEM release.

Software Component Reuse. There is a growing

development and practice of software asset management
and business practices that focus on asset harvesting and
reuse, organized around evolving product-line
architectures [12, 13]. The results are strong and
promising [14, 15]. In addition, the shift in business
practices toward process-centered organizations [16],
agile and virtual enterprises [17], and collaborating and
learning organizations [18] provide us with new ways to
model and understand the “people side” of software
engineering.

2.1. Our research

Our research seeks to integrate the results in the three
areas, above, into a synergistic, integrated model
supporting the needs of organizations developing large-
scale software. We strive to identify the concepts and
architectures that enable software tools and methods that
these organizations can use to manage their assets: their
software intellectual property and products, their software
developers with development tools and techniques, and
the software engineering processes that guide the
organization’s use of these assets to continuously produce
and deliver customer value.

In this paper, we introduce an integrated product and
process component model based on the OMG UML and
SPEM models. We focus on the many ways that product
and process elements are related, and we define views of
the integrated model that enable and support some of the
capabilities described in the scenario of Figure 1.

We are developing an experimental process execution
environment to validate our concepts and to exercise the
new standards. We are eager to help enable the
integration of product development environments, process
engineering environments, and process execution
environments into a powerful suite of tools that improve
software engineering capabilities.

3. Conceptual model

A software development project involves people
carrying out engineering process activities to produce
software products. Figure 2 illustrates the relationship
between the “four Ps” of software engineering activities
[10].

Project: People + Process Product

University of Alabama Computer Science Technical Report TR-2002-05 2002 September 9 p. 4

People Process

Product

Project
Produces

Perform

Responsible
For

Figure 2. The Four Ps of software engineering

Figure 3 illustrates that a common, integrated model
will support extracting discipline-specific views of
software development projects that span time and space
(geographical, organizational, and functional space). The
integration of product, process, and people models allows
the process and people models to parallel and complement
the rich structure of the product models. For example,
engineering process activities and techniques align with
product models that feature component-based
architectures, product-line architectures, component reuse
and evolution, and the use of architecture and design
patterns and frameworks. The composition of the process
activities reflects the composition of the product models.
Further, the integration of product, process, and people
models facilitates reuse management by allowing product
developers and project managers to navigate through the
history of product artifacts, tracing to requirements,
design and test models, version history, other reuse
contexts, responsible individuals and organizations, and
various cost and quality metrics captured as part of prior
development activities. By formally representing all these
product, process and people model elements and
embedding them in a configuration and change
management system, the software developer can readily
reuse and manage the growing wealth of product and
process component artifacts available to an organization.
With the right information, they can better make the right
decisions and deliver cost-effective, high-quality
products.

Given the huge scope of the model and the diversity of
stakeholders using the model, we identify numerous
viewpoints of the model that focus on the roles and
understanding of specific stakeholders. The viewpoints
include guidance on how to interactively extract and
browse specific model views and how to navigate among
the many relationships in the highly-integrated model.

People Process
Product

space

time

Organization-
Centric
Views

Product-Centric
Views

Workflow-
Centric
Views

Software
Engineering

Model

Asset harvest and reuse

Figure 3. Views of an integrated software

engineering model

Figure 4 uses a UML class diagram to illustrate the
essential structure of the integrated model, aligned with
the Four Ps of Figure 2. Figure 4 shows that people have
roles in the software engineering process. In those roles,
they are responsible for work products. They perform
process activities to produce work products, using other
work products as input to the process activity. Note: we
use the People-Process-Product triangle layout in our
other diagrams, helping to quickly identify the alignment
of classes and Four P model aspects.

People Process

Product

Project
Produces

Perform

Responsible
For

WorkProduct

Person Activity

0..n

0..n

+input
0..n

0..n

Uses

0..n

0..n

+output
0..n

0..n

Produces

ProcessRole

0..*

0..1

0..*

0..1

IsResponsibleFor

0..* 0..*0..* 0..*
Has Performs

Figure 4. UML class diagram capturing the
essential structure of the integrated model,

aligned with the Four Ps model

Figure 5 shows the organization of the integrated
model as packages. The three key packages capture the
process, product, and people models.

University of Alabama Computer Science Technical Report TR-2002-05 2002 September 9 p. 5

Product Model People ModelProcess Model Support

Basic
Elements

Process
Structure

Process
Components

Process
Lifecycle

Enactment

UML Models

CORBAcomponents Asset
Management

Guidance Views

Figure 5. Package structure of the integrated model

4. The integrated model

The following sections describe the models in the
packages of Figure 5, focusing on the integration of the
process, product, and people models.

4.1. Basic Elements package

The Basic Elements package provides the basic
conceptual classes for the overall model. Figure 6
shows the package contents. The “root” of all model
elements is the abstract ModelElement class. Each
ModelElement has an external description that provides
a human-readable description of the element. Each
model element can also have associated Guidance,
which provides further information to those people or
tools using the model element. The OMG SPEM defines
types of Guidance for process elements, including
Techniques, Guidelines, Estimates, Templates, etc. We
define additional guidance, including guidance for
product and people elements, as Figure 7 suggests.

Guidance

ExternalDescription
content : String
name : String
medium : String
language : String

ModelElement
name : String

0..n
1..n

+guidance

0..n
+annotatedElement

1..n
1

1..n +subject
1

+description

1..n

Dependency

1
0..n

+client
1 +clientDependency

0..n

1
0..n

+supplier
1 +supplierDependency

0..n

WorkProduct WorkDefinitionProcessPerformer

Artifact StateMachine
0..*0..1

+context +behavior
0..1 0..*

Figure 6. Basic Elements package

The Dependency specialization of ModelElement
defines binary relationships between ModelElements.
For example, the SPEM defines types of dependencies
between process elements, including Precedes and
Trace. We also define other types of Dependency for
and between process, product, and person role elements;
Dependency is our general-purpose relationship
modeling tool.

CheckList

Technique

UMLProfile Guideline

Template

Estimate

ToolMentor

The items shown are process-oriented guidance.
Product-oriented guidance includes user manual, admin guide,
maintenance guide, etc.
People-oriented guidance includes standard org structures,
team-building techniques, performance assessment forms, etc.

ViewPointSpec

Guidance ModelElement+guidance
+annotatedElement

1..n
0..n

1..n
0..n

Figure 7. Types of Guidance

Although we usually think of work products as the
artifacts of interest in software engineering models, we
also identify process elements (WorkDefinition) and
person role elements (ProcessPerformer) as artifacts.
This emphasizes that all three of the element types are
first-class elements of the integrated model, and it
allows the elements to be under the control of an asset
management system to track configuration and changes.
Artifacts have an associated StateMachine. This allows
capturing work products in various states of completion,
or processes in various states of execution, or people
with differing states of assignment and skills. Here,
StateMachine refers to the UML state machine and
action model, bringing the functionality of state-
dependent behavior, activity graphs, action semantics,
workflows, process enactment, and other functionality
to support executing software engineering processes.

4.2. Product package

The Product package provides for the representation
of product models and dependencies between them. The
primary sub-package within the Product package is the
UML Models package, portions of which are illustrated
in Figure 8. Here, we adopt by reference the models in
the UML standard specification [19]. The UML
specification defines numerous ways that large, complex

University of Alabama Computer Science Technical Report TR-2002-05 2002 September 9 p. 6

Requirements Model

Use-Case
Description

ActivityDiagram

ExternalDescription

Use-Case Model

Actor

Use-Case
Diagram

Use Case

Analysis Class Use-Case Realization

Analysis
Model

<<trace>>

Analysis
Package

Design Model

Design
Class

Use-Case Realization --
Design

Design
Subsystem

Interface

<<trace>>

Analysis diagrams and
design diagrams include
- class diagrams
- sequence diagrams
- state-chart diagrams
- activity diagrams
- etc.

WorkProduct All classes, here, are
types of WorkProduct

Figure 8. Portions of the UML Models package

Requirements
Models

• Use-case diagrams
• Activity diagrams

Analysis
Models

• Class diagrams
(with analysis
stereotypes)

• Collaboration
diagrams

Design
Models

• Class diagrams (with
implementation-
specific stereotypes)

• Sequence diagrams
• State diagrams
• Activity diagrams
• Deployment

diagrams

Implementation
Models

• Component
diagrams

• Implementation-
specific models

Evolving models of the product

Figure 9. Product models as an evolution of UML models

software products can be represented as UML models,
including class diagrams, interaction diagrams,
component diagrams, state diagrams, etc. There are
myriad books and guides on using UML to model
software products in all phases of development.

To help organize the UML product models and align
them with process models, we adopt the Unified Process
[10], which characterizes the product models as an
evolution of UML diagrams representing Requirements
Models, Analysis Models, Design Models, and
Implementation Models, as Figure 9 shows. These
models, together with supporting documents, capture an
evolving syntactic and semantic description of the
software product during development.

Because we emphasize component-based software
reuse in our model, the product model also includes the
OMG CORBAcomponents model [5].
CORBAcomponents represent reusable product

components defined in terms of the interfaces the
component provides and uses and the events the
component publishes and consumes. We also assume the
corresponding CORBAservices component infrastructure
of component containers and their use of standard
communication (object request broker), notification,
persistence, transaction, and security services [20].

As a development organization adopts component-
oriented architectures, architectural styles, domain-
specific product-line architectures, design patterns, and
other repeating product structure, the family of product
models for the organization will develop a very rich
structure. As we align process and people models to the
product models, the structure of the process and people
models will reflect the structures of the product models.
For example, certain groups in an organization will be
responsible for developing specific architectural
components, or there will be design process guidelines for

University of Alabama Computer Science Technical Report TR-2002-05 2002 September 9 p. 7

specializing each component of a product-line
architecture into components of a product-specific
architecture.

4.3. Process Structure package

Figure 10 illustrates the Process Structure subpackage
of the Process package. This is the main place for
integrating the process model (Activity and
WorkDefinition) with the product model (WorkProduct)
via people (ProcessRole and ProcessPerformer). A
ProcessRole is responsible for a set of WorkProducts and
a ProcessRole performs Activities. A ProcessPerformer is
the performer of a group of WorkDefinitions that cannot
be associated with specific ProcessRoles.
WorkDefinitions use and produce a partially-ordered
collection of WorkProducts. The WorkProducts are
inputs to and/or outputs from the corresponding
WorkDefinition. The attribute ‘hasWorkPerArtifact’ on
the ActivityParameter indicates that multiple instances of
WorkDefinition are needed, with one WorkDefinition per
instance of the corresponding WorkProduct.

In the integrated model, the work definition and work
product aggregation structures often parallel each other:
there are subwork definitions for activities to produce
corresponding subwork products, and this subwork is
assigned to a specific subgroup in the development team.
Also, the Process Lifecycle package (defined in a later
section) defines Phase, Iteration, and Lifecycle as
subtypes of WorkDefinition. These process lifecycle
elements often correspond directly with work products
identified as deliverables of the corresponding phase,
iteration, and lifecycle. Using the Dependency relations

of ModelElements in Figure 6, numerous other parallel
structures can be modeled. For example, a design process
activity following an analysis activity can correspond to a
design product model tracing to an analysis model, where
the analysis model is an input work product to the design
activity and the design model is an output work product
from the design activity. Model viewpoints will exploit
these and other Dependency relations between
WorkProduct, WorkDefinition, and ProcessRole.

4.4. Process Component package

Figure 11 shows the Process Component subpackage
of the Process Model package. This package provides the
basic structure to collect process elements into reusable
process components. A ProcessComponent is an
internally consistent and complete collection of
WorkDefinition artifacts and associated guidance, kinds
of WorkProducts, etc. A ProcessComponent can be
combined with other ProcessComponents to assemble a
partial or complete software engineering process.

Disciplines partition the Activities in a
ProcessComponent into related activities. For example,
the Unified Process identifies groupings of activities into
core workflows such as Requirements, Analysis, Design,
Implementation, and Test. The composition of Activities
in the Discipline parallels the composition of product
model artifacts in the WorkProduct output from the
Activities. The Lifecycle Precondition and Goal
Constraints on the Activity WorkDefinition assure that
software engineering activities reflect the ‘trace’ and
other dependencies between WorkProducts.

ActivityParameter
hasWorkPerArtifact : Boolean

Step

Person ActivityProcessRole

WorkProduct
isDeliverable : Boolean

ProcessPerformer WorkDefinition

0..*

0..*

1

+step0..*

+activity1

+role
0..*0..* 0..*

0..* 0..*
+assistant
0..* 0..*

+responsibleRole
0..1

0..*

0..*

+consistsOfWorkProduct
0..*

+containingWorkProduct

0..*

+workProduct 0..*

0..1

0..*

+performer

1
0..*

0..1
+subWork

0..*

+parentWorkDefinition

0..1

0..*

0..*

0..*

+output
0..*

Produces

0..*

0..*

0..*

+input
0..*

Uses

+work
0..*1 0..*

Figure 10. Process Structure package

University of Alabama Computer Science Technical Report TR-2002-05 2002 September 9 p. 8

Process Discipline Activity
0..*1

categorizes

<<Dependency>>

1 0..*

ModelElement

UMLPackage

ProcessComponent
0..1 0..n0..1 0..n

imports

<<Dependency>>

Figure 11. The Process Component package

4.5. Process Lifecycle package

The Process Lifecycle subpackage of the Process
package captures the logical (often temporal) ordering of
process activities. This supports the enactment of
partially-ordered sequences of activities in workflows.
Figure 12 illustrates the Process Lifecycle package. The
Enactment subpackage of the Process package captures
the workflow and enactment behavior of process
activities, that is, the workflow engine creates
WorkDefinition instances in response to posted Goals and
enabled Preconditions. The constraint for a
WorkDefinition (or Activity) is typically defined in terms
of conditions on its input and output WorkProducts. This
is an essential integration point between process and
product models. For example, a goal for a subsystem
testing activity might be that the subsystem is in a
“tested” state, and a precondition of that testing activity
might be that all the code WorkProducts in the subsystem
be in a “unit tested” state.

A Lifecycle is a sequence of Phases, which are, in turn,
a sequence of Iterations. A Lifecycle defines the
complete process to be performed in a given project. The

Phases are strictly ordered in time with no overlap. To
further integrate the process and product models, we
adopt structure from the Unified Process so that each
Phase has guidelines capturing the desired quality of
specific product models. The desired quality provides
constraints on Phase WorkDefinitions that use and
produce WorkProducts. The quality of a given
WorkDefinition is interpreted by people and recorded by
the enactment engine.

For example, the Unified Process Inception Phase (an
instance of a Phase WorkDefinition) has goals that
correspond to the existence of some percentage of
requirements and analysis models (represented as UML
diagrams and text) to limit project scope, and the
existence of some percentage of design (again,
represented as UML diagrams and text) to capture
architecture feasibility. Satisfying these goals can be
interpreted as satisfying preconditions for the Unified
Process Elaboration Phase, which follows the Inception
Phase.

Note that each enactment of a process phase results in
baselining the associated product models using the asset
management facilities from the Support package. The
logical ordering of process phases corresponds to a ‘trace’
dependency ordering of product model versions, captured
by the WorkProduct input/output relations to the
WorkDefinitions. Thus, the structure of the process
model is reflected and traceable through the ‘trace’
dependencies of the product model.

 Note also that adopting a methodology, via a selected
and tailored process model instance, enables the capture
of rich relationships for subsequent reuse analysis. A
process execution tool can record the activities, the work
products, the guidance used, the people involved, the
pre/post conditions, etc.

Iteration Phase

Constraint
body : BooleanExpression

Iteration, Phase, and
Lifecycle have
aggregations implied ...

Precondition

GoalWorkDefinition
0..*1 0..*1

0..*1 0..*1
0..*

0..1

+subWork 0..*

+parentWorkDefinition

0..1

Lifecycle Process
0..1

0..*
0..1

0..*Activity

ModelElement

+/constraint

+/constraint
+/constrainedElement

+/constrainedElement

+governingLifecycle
+governedProcesses

Figure 12. Process Lifecycle package

University of Alabama Computer Science Technical Report TR-2002-05 2002 September 9 p. 9

4.6. Support package

The Support package in Figure 5 includes Guidance,
Asset Management, and Views. The section on the Basic
Elements package and Figure 7 discussed Guidance.
Asset Management captures all ModelElements as
ConfigurationItems with corresponding Versions,
VersionHistories, and Variants. A Configuration is a
selection of a specific Version for each ModelElement in
the Configuration. Because all ModelElements are
ConfigurationItems, Configurations can include product,
process, people, and support model elements.

ActivityDiscipline
1 0..*1 0..*

categorizes
<<Dependency>>

Viewpoint
1..*

0..*

1..*

0..*

ViewSpec
1

11

1

Guidance

View
0..*1 0..*1

conforms
<<Dependency>>

ModelElement
0..*

0..*+containingView
+participatingElement

0..*

0..*

Figure 13. Views package

The Views subpackage of the Support package
provides ways to specify and create views of the
integrated process, product, and people model. Figure 13
Illustrates the Views package, which is motivated by the
IEEE Architectural Description standard [21]. The intent
is to provide discipline-specific views into instances of
the integrated product, process, and people model. The

views focus on the types of model elements and
relationships of interest to a given software engineering
discipline. Viewpoints are templates for the kind of views
available for a Discipline, and ViewSpecs define how to
construct a View for a given Viewpoint.

For example, views supporting a product component
designer would focus on artifacts in design models,
activities for designing components that interface with
this component, guidance for designing product
components, trace relationships to the requirements and
analysis models that the design realize, and trace
relationships to implementations and tests for the design.
While viewing any given model element instance, the
designer could navigate to any other model element via
the relationships defined in the integrated model. The
designer could also navigate the model definition (the
metamodel) to understand the semantic meaning and
intent of model instances and relationships.

5. Conclusions and next steps

We have formed a comprehensive model that
integrates existing techniques and standards for modeling
software products, processes, and people, and we have
analyzed the model to identify the key relationships that
integrate the three aspects. Our on-going effort is focused
on validating our models by building and using process
execution tools that instantiate, manipulate, and browse
the integrated model. We are also developing product and
process reuse scenarios and the discipline-specific
viewpoints to improve a project manager’s ability to
estimate and manage reuse-based projects.

use case modeling :
Guidance

Develop module
requirements : Activity

guidance
input WorkProduct

output WorkProduct

output WorkProduct

output WorkProduct
output WorkProduct

performer
category

guidance

module requirements :
Requirements Model

use case :
Use Case

actor : Actor

description : Use-Case
Description

output WorkProduct

trace :
Dependency

output WorkProduct

analyst :
ProcessRole

performer

Irene :
Person

analysis :
Discipline

apprentice-analyst
: ProcessRole

assistant

Ahmad :
Person

assignee assignee

Figure 14. A view for the analysis discipline focusing on the requirements activity of Figure 1

University of Alabama Computer Science Technical Report TR-2002-05 2002 September 9 p. 10

6. References

[1] C. Szyperski, Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, Harlow, England,
1998.

[2] G.T. Heineman, and W.T. Councill, Component-Based
Software Engineering: Putting the Pieces Together, Addison-
Wesley, Boston, MA, 2001.

[3] Java 2 Enterprise Edition Specification v1.3, Sun
Microsystems, Palo Alto, CA, 2001.

[4] D.S. Platt, Introducing Microsoft .NET, Second Edition,
Microsoft Press, Redmond, WA, 2002.

[5] CORBA Components, Version 3.0 (document number
formal/02-06-65), Object Management Group, Framingham,
MA, 2002.

[6] Model-Driven Architecture (MDA), (document number
ormsc/2001-07-01), Object Management Group, Framingham,
MA, 2001.

[7] D.S. Platt, Understanding COM+, Microsoft Press,
Redmond, WA, 1999.

[8] M.E. Fayad and R.E. Johnson, editors, Domain-Specific
Application Frameworks: Frameworks Experience by
Industry, John Wiley & Sons, 1999.

[9] Software Process Engineering Metamodel Specification
(document number ptc/2002-05-04), Object Management
Group, Framingham, MA, 2002.

[10] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified
Software Development Process, Addison-Wesley, Reading,
MA, 1998.

[11] B. Henderson-Sellers, B. Unhelkar, OPEN Modeling with
UML, Addison-Wesley, Harlow, England, 2000.

[12] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse:
Architecture Process and Organization for Business Success,
Addison-Wesley, Harlow, England, 1997.

[13] M. Jazayeri, A Ran, and F. van der Linden, Software
Architecture for Product Families: Principles and Practice,
Addison-Wesley, Boston, MA, 2000.

[14] C. Hofmeister, R. Nord, D. Soni, Applied Software
Architecture, Addison-Wesley, Reading, MA, 2000.

[15] J. Bosch, Design and Use of Software Architectures:
Adopting and Evolving a Product-Line Approach, Addison-
Wesley, Reading, MA, 2000.

[16] M. Hammer, Beyond Reengineering: How the Process-
Centered Organization is Changing Our Work and Our Lives,
Harper Business, 1996.

[17] K. Preiss, S.L. Goldman, R.N. Nagel, Cooperate to
Compete: Building Agile Business Relationships, Van
Nostrand Reinhold, New York, 1996.

[18] P. Seng, A. Kleiner, et al., The Dance of Change: The
Challenges of Sustaining Momentum in Learning
Organizations, Doubleday/Currency, New York, 1999.

[19] OMG Unified Modeling Language Specification, v1.4,
Object Management Group, Framingham, MA, 2002.

[20] The Common Object Request Broker: Architecture and
Specification, v3.0, Object Management Group, Framingham,
MA, 2002.

[21] IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems, IEEE Std 1471-
2000, Institute of Electrical and Electronics Engineers, New
York, 2000.

