

ITS Graphical Report Maker

 Technology
Comparison for

Design

05 April 04

Team JACT Software
RIT Software Engineering Department

Version 1.1.0

Technology Comparison for Design Version 1.1.0

 Page 2 of 7

Revision History
Revision Date Author(s) Section Comments/Changes
1.0.0 3 April 04 J. Myers All Initial Revision
1.1.0 5 April 04 All All Grammar and fixes

Technology Comparison for Design Version 1.1.0

 Page 3 of 7

Table of Contents

1. INTRODUCTION 1

2. SCOPE 1

3. OVERVIEW 1

4. TRADEOFFS 1

5. RISKS 1

6. CONCLUSIONS 1

Technology Comparison for Design Version 1.1.0

 Page 4 of 7

1. Introduction

The purpose of this document is to present technical information regarding the
architectures investigated when deciding which implementation to utilize on the
Graphical Report Maker Project. Each explored architecture has tradeoffs for each listed
and a final determination is made from these. There are a total of 6 architectures
discussed in this document: Standalone Java Program, Java Thin-Client using Web
Services, Java Thin-Client using RMI, Java Smart-Client, JavaServer Pages, and Java
Applets.

2. Scope

This document is intended to be used by the team designing and implementing the
final system and for the customer as a reference for future projects. It is more than likely
that the design considerations investigated for this project will reappear in the future;
therefore, documenting these tradeoffs could lower costs in the future.

3. Overview

Six different architectures were chosen for investigation to find the optimal one for
this project. A short description of each follows:

1. Standalone Java Program – A program residing solely on the user’s computer

and handles all interaction with the databases, the web servers, and persists the
data on the machine that it is running on. This type of application is ideal if
several users do not need to modify the same data and that single computer
can be devoted to processing the data and graphs.

2. Java Thin-Client using Web Services – A program running on a client
communicates to the server via Web Services. Essentially, the server has no
idea what the client implementation is, as Web Services are language
independent. All that it knows is that it has gotten a request to perform some
function and does so accordingly. To enable this, the communication medium
is generally through XML SOAP-based objects. This is the only way to make
it portable across all the different types of implementations. This will require
the client to do more error-checking and have more logic built into it, as it
cannot communicate as often with the server.

3. Java Thin-Client using Remote Method Invocation (RMI) – A program
running on a client that communicates to the server via Remote Method
Invocation. This type of communication allows for many interactions with the
server as the communication method is simply Java Objects; that is, no
conversion in data has to occur if the client is also Java.

4. Java Smart-Client – Although not an industry accepted term, our definition of
a “Smart-Client” does all but the minimalist interactions with the server. For

Technology Comparison for Design Version 1.1.0

 Page 5 of 7

our definition, the client performs all of the error-checking and logic for
program control. In this scheme, the only functions of the server would be for
persistency of the data and execution of the reports. Everything else would be
left up to the client.

5. JavaServer Pages – The purpose of JavaServer Pages are to make the transfer
of information to and from the client as minimal as possible. One modern
way of doing so is through dynamic web pages. These simple HTML pages
are created on-the-fly by the JavaServer (typically TomCat) and know how to
process the information entered by the user interacting with the system.

6. Java Applet – A Java program distributed and executed within a standard web
browser. These programs tend to be very small in size, but also limited in
functionality. To prevent security violations, Applets intentionally cannot
interact with the file system nor network resources as much as a full Java
program can.

4. Tradeoffs

Technology Pros Cons

Standalone Java Program

• No network
communication with a
server required.

• Less complex program
means less of a chance
of errors.

• Central persistency of
data not available.

• Standalone system
required to execute
reports.

• Still requires external
interaction with the
database and web
servers.

Java Thin-Client using Web
Services

• Server can interact
with any client that can
utilize Web Services.

• Communicates over
standard HTTP.

• Simple interface.
• Data communicated

via XML-SOAP,
which can be persisted
in that form.

• Less interaction
between server and
client can be performed.

• Communication of data
must be parsed at both
ends into common Java
Objects.

• Error-Checking will
need to reside on the
client before
communication can
take place.

Technology Comparison for Design Version 1.1.0

 Page 6 of 7

Java Thin-Client using RMI

• Server and client can
interact in standard
formats.

• Interaction can be
designed so that error-
checking and logic can
reside on the server.

• Language dependent
communication requires
Java client.

• Non-Standard
communication means
persistency likely Java
Serialization of Objects.

Java Smart-Client

• Less interaction
between server and
client for low-
bandwidth situations.

• Server has minimal
functionality and less
likely to fault.

• Client likely too large
for distribution over the
Internet.

• Logic and error-
checking not resident
on server and changes
are hard to propagate.

JavaServer Pages

• HTML pages require
very low bandwidth.

• Interaction is cross-
platform requiring only
an Internet browser.

• No processing on
client.

• Limited functionality in
terms of graphical user
interfaces.

• Requires the installation
of a separate JavaServer
from the Web Server,
like Tomcat.

Java Applet

• Small program.
• Can be run within any

standard web browser
that supports Java.

• Limited interface
abilities.

• File System interaction
restrictions that may
inhibit the program
from functioning
correctly.

5. Risks

The main reason for doing an analysis of this type is to allow for our quality
attributes, as defined in the Software Requirements Specification, to remain. Some of
these quality attributes include: Maintainability, Extensibility, and Availability. Each of
the types discussed in the table above contribute in some way to these attributes. It is
important to choose an architecture that has the best proportions of each of them before
proceeding with the remainder of design and implementation.

Following this decision, a risk could emerge if the architecture chosen does not
continue to meet the quality attributes originally defined for the project. Understanding
and adapting any design that emerges to ensure that no quality attributes are lost in this
process can mitigate this risk.

Technology Comparison for Design Version 1.1.0

 Page 7 of 7

6. Conclusions

For the ITS Graphical Report Maker System, the Java Thin-Client using RMI
Technology was chosen as the predominate client/server architecture. The reasons for
this decision are:

1. Allows for smaller client program to be downloaded to the user’s computer as

the logic and processing for the UI can remain on the GRM server.
2. No parsing of data on either side as Java Objects are the communication

medium.
3. Java Objects that are passed back and forth can be serialized directly on the

server to persist the Element data.
4. Server execution of reports can be performed through any Java program with

RMI.

It should be noted that when deciding on an architecture, it came down to either Java
Thin-Client with Web Services and Java Thin-Client with RMI. The main point that
moved the decision to Remote Method Invocation was the fact that more logic needed to
reside in the client than the group felt comfortable with. More logic in the client meant
that the computer would have to do the processing before communicating with the server,
and this was a tradeoff against performance. Therefore, RMI was used so that this logic
and processing could be passed-off to the server.

