RIT SOFTWARE ENGINEERING SENIOR PROJECT

ITS Graphical Report Maker

Cheng-Train Chiou, John Myers, Adam Buehler, and Cesario Tam

Abstract—Systems Management in ITS at RIT needs a tool that can generate Reports that analyze data from a large database of
information. The main function of this tool is the creation and execution of Reports and exporting results to an external format. This
tool needs to be a distributed system that provides centralized persistency. The development strategy uses a plan that is based on
the existing ITS process. Using the ITS process as guideline of what is expected, a list of deliverables was negotiated at the
beginning of the process. A summary of the development plan discusses the initial project plan, milestones, and actual results of the
plan. A description of the architecture and design covers the technologies used and our reflections about the project.

Index Terms—Software Engineering, Requirements/Specifications, Design Tools and Techniques, Design Techniques, Software
Verification, Test Documentation, Maintenance, Management, Design, Software Architectures, Software Engineering Process,
Graphs and networks, Relational databases, Client/server and multitier systems

1 INTRODUCTION

Rochester Institute of Technology (RIT) Information and
Technology Services (ITS) provides RIT with various IT
oriented services. The four primary categories of services
ITS provides are: Administrative, Customer Support, Insti-
tutional Research & Policy Study, and Technical Support.
Of these services, Technical Support is comprised of Enter-
prise Technologies and Architecture, Data Center Opera-
tions, Systems Management Tools and Reporting, Program
Management Office, Telecommunications, Network and
Systems Engineering and Support. This group is responsi-
ble for RIT’s computing and networking infrastructure that
supports RIT’s information technology needs.

One of the responsibilities of ITS Systems Management
is the generation of real-time data, historical data, and Re-
ports with graphs on the capacity, availability and respon-
siveness of ITS supported services. This data is used to
show ITS system performance to customers, help support
staff manage the systems, and provide information for RIT
leadership when making technical and business related
decisions.

ITS has a database of raw data, collected from different
RIT computing and networking systems. This data can be
used to determine RIT’s system network throughput, la-
tency, etc. Currently, ITS uses many commercial off the
shelf products to analyze the data contained within the da-
tabase of network information. This is sufficient for techni-
cal and engineering staff use, but difficult to present to
management or decisions makers.

The goal of this project is to develop a toolset to allow
end-users to create a Report containing self-selected data
elements and presenting them in the manner the user sees
fit. The tool will extract data from the existing database.
The data retrieved is then analyzed using provided statisti-
cal libraries. The analyzed data is then represented in a
graph or table format. We named the tool Graphical Report
Maker (GRM).

An acceptable solution will provide features for:

- Creating database queries.

- Processing the retrieved data.

- Displaying processed data in a graphical or tabular

format.

- Exporting the graph or table to an external format
for example JPEG

- Provide persistency.
The figure 1.1 is a representation of what the GRM system
will do. RIT network data is collected and stored in the
network performance database. An ITS system administra-
tor creates a Report using a client interface, and then exe-
cutes the Report. The GRM system then produces a graph,
exports it into JPEG format and displays on an ITS web-
page. An external program or script is also capable of exe-
cuting the Reports contained within the GRM system.

/l X

ITS Customer
Web
Server
Data +
Collection
* Graphical
Report ITS System
3 Maker Administrator
Network |+ System
Performance
Data
v
External
Program
or Script

Figure 1.1 - System Interaction Diagram

2 PROJECT REQUIREMENTS

2.1 Users and Operational Environment

There is only one user class for the GRM system. This user
class has access to all available functionality, as described
fully in the Software Requirements and Specification (SRS).
The user accesses the system via a web console which loads
a Java thin-client as the graphical user interface (GUI).

2.2 Functional Requirements

The main goal of an end-user of the GRM system is to exe-
cute a Report. A Report Element consists of Rover Elements

that retrieve raw data from a database, Operation Elements
that process the raw data into meaningful information, and
a Generator Element that generates a graphical or tabular
Report of the processed data. After executing a Report, the
end-user can export the generated graphical or tabular re-
sult into an external format such as a JPEG image or CSV
file stored in a specified location.

The GRM system provides the end-user with the ability
to build each type of Element. To build a Rover Element the
end-user needs to provide attributes that can be built into a
SQL query for obtaining raw data from the database. A list
of Operation Elements is already provided within the GRM
system for the end-user to select from. Custom Operations
can be added using dynamic class loading. The end-user
implements the Operation class to perform a custom opera-
tion and places the compiled class into the operation direc-
tory. To build a Generator Element the user can select either
a Graphical Generator or Tabular Generator and provide
the attributes for the graph or table to be generated. A
Graphical Generator produces a line graph from its input
while Tabular Generator produces a table.

The end-user can also build composite Elements which
contain more than one Element. A Report is a composite
Element that contains at least one Rover and one Generator.
Composite Elements with no inputs and at least one output
are categorized as Rovers. Composite Elements with at least
one input and at least one output are categorized as Opera-
tions. Composite Elements with at least one input and no
outputs are categorized as Generators. Composite Elements
with no inputs and no outputs are categorized as a Report
and are executable.

Preview is a function the end-user can use to check the
results of executing an individual Element. Previewing a
Rover will generate a generic tabular result of the Rover’s
output(s). Previewing an Operation will generate a generic
tabular result of the Operation’s output(s) using generic
input(s). Previewing a Generator will generate the graph or
table minus any data.

The GRM system also provides persistency by allowing
the user to save Elements he has built. The ability to delete
Elements compliments the save function for basic manage-
ment of persistent Elements.

2.3 Non-Functional Requirements

The GRM system interacts with two external systems. One
external system is a database running mySQL maintained
by ITS with a pre-existing schema. The GRM system also
provides a console interface that allows external scripts,
possibly scheduled on a periodic basis, to execute Reports
and export results.

Sufficient documentation accompanies the GRM system
to provide ease of use and maintenance. An operations
manual describes the use of the GRM system. Design docu-
ments describe both the high-level architectural view and
detailed-level class view of the GRM system design. A de-
ployment plan describes how to install and set up the GRM
system. Post development system support has also been
discussed with ITS management.

Design considerations contribute to the maintainability
of the system. The server system is divided into various

RIT SOFTWARE ENGINEERING SENIOR PROJECT

components that are well documented in the High-Level
Design.

Performance, availability, extensibility and usability at-
tributes of the GRM system are also specified in the SRS
document.

3 DEVELOPMENT STRATEGY

3.1 Process Model

ITS uses a process similar to the waterfall software process
model. There are six phases in the ITS process: initiate, ana-
lyze, design, develop, test, and implement. For each phase
there is a corresponding phase gate. The phase gate is a
meeting in which deliverables and project status are pre-
sented to ITS management. At each phase gate meeting the
management reviews the project status and signs off on the
deliverables signifying the end of the phase. It is possible to
be in more than one phase at a time; however it is recom-
mended that the project team is never in more than two
phases at a time.

ITS does not dictate specific deliverables for each phase,
instead they provide a purpose for each phase and we de-
termined the specific deliverables that will satisfy the pur-
pose of each phase. For our project the list of deliverables
was negotiated during the initiate phase gate.

The initiate phase serves as a starting point for a project
and determines feasibility and/or need of a project. In ad-
dition to the proposed list of deliverables, we also dis-
cussed our plan and strategy for the project.

The analyze phase entails further examination of the re-
quirements of the project through an elicitation process. For
this phase gate we presented detailed level requirements
and test plans for verifying that our product matches the
requirements specified.

Once requirements and specifications are determined,
the next step is designing a system that can satisfy those
requirements and specifications. A high-level design and
detailed-level design were presented at the design phase
gate to describe the implementation of the GRM system.

The develop phase consists of coding the system and
preparing user documentation for use of the system. Source
code, API, and an operations manual are products from this
phase.

When development of the system is completed, the test
phase verifies and validates that the system satisfies re-
quirements determined in the analyze phase. Results of the
testing are presented during this phase gate.

Finally the implement phase involves deploying the
GRM system. During the phase gate a deployment plan is
presented.

3.2 Roles and Responsibilities
As part of our development strategy, we assigned roles to
each member of the development team. Each role came
with certain responsibilities to ensure that these tasks are
distributed among each member in the development team.
The team leader is responsible for team moral and task
accountability. He also acts as primary contact for any offi-
cial persons.
The quality assurance engineer is responsible for quality

BUEHLER, CHIOU, MYERS, TAM: ITS GRAPHICAL REPORT MAKER

of work and reviews each document for consistency and
completeness.

The planning coordinator is responsible for scheduling
dates and deadlines for deliverables. He also tracks any
changes in the schedule and manages the risks on slippage.

The support manager maintains the development server
and tools used. He also keeps the team website up to date.

The release management engineer ensures documents
and code are properly prepared, organized and dispersed.

The customer liaison acts as the point-of-contact with the
customer.

The development lead manages the design and code. He
is in charge of making final technical decisions and trade-
offs in the system.

The secretary takes meeting minutes and disperses them
to the team.

3.3 Requirements Elicitation Methodology

The methodology we used for requirements elicitation in-
volved a mix of informal interviews with the customer and
email correspondence.

During the initiate and analyze phase we had two-hour
weekly meetings with the customer. For each meeting we
prepared a list of questions for the customer. This allowed
the customer to come prepared to answer the questions and
keep the meeting time short. The questions addressed at the
interviews provided in depth details of the customer re-
quirements.

Email correspondence involved simpler questions that
could be effectively answered through text. This method
was effective when the customer was not readily available.

The combination of face-to-face interviews and e-mail
provided an effective arrangement for both the customer
and the team to gather requirements.

3.4 Requirement Specification Tools

The techniques and tools we used for requirements elicita-
tion included use cases, finite state diagram and the defini-
tion of a formal grammar.

Use cases showed our customer exactly how an end-user
will use the GRM system. This technique allowed the cus-
tomer to verify that the system will be capable of doing
what is needed and also led to new requirements. Analysis
of the use cases lead to normalizing our use cases. Any re-
peating use scenario was factored into a common use case.

A finite state diagram provided the customer a visual
representation of the states of the GRM system. Using the
finite state diagram we could show the customer the se-
quence the GRM end-user would follow to accomplish each
use case scenario.

A formal grammar provided a definition of the Elements
within the system. The grammar specified how each Ele-
ment is represented within the GRM system and ensured
consistency within the definitions.

3.5 Design Methodology

Our design methodology started with researching the tech-
nologies that could be used. We performed a technology
comparison that is documented in the Technology Com-
parison Paper. After investigating the trade-offs of each
technology and architecture, we made a decision to use

Java Remote Method Invocation (RMI) technology.

Following the architectural research we developed the
detailed-level design based on our high-level design which
consists of the UML class diagrams and component de-
scriptions.

4 DEVELOPMENT PLAN

4.1 Initial Plan and Estimates

The initial plan and estimates are in the Planning and Strat-
egy document. In summary, the steps in our plan were to
assign roles, identify stakeholders, identify deliverables,
produce a schedule with estimated dates and identify risks.

4.2 Planned Deliverables and Phase Gates

For each phase we determined a list of deliverables that
satisfies the needs of ITS management and Software Engi-
neering department requirements. For each phase gate, we
estimated a date of completion.

Phase Gate Deliverables (Planned Date/ Actual Date):
* Denotes deliverables not originally planned.
Initiate phase (19 December 2003)

- Planning and Strategy

- High Level Requirements

- Commercial Graphing Package Technical Proposal*
Analyze phase (30 January 2004 / 12 February 2004)
- Software Requirements and Specification

- Operational Testing Scenario

- Acceptance Test Plan

Design phase (25 February 2004 / 30 March 2004)

- High-Level Design

- Detailed-Level Design

- Technology Comparison Paper*

Develop phase (2 April 2004 / 3 May 2004)

- Source Code

- Operations Manual

Test phase (23 April 2004 / 14 May 2004)

- OTS Results Report

- ATP Results Report

- Issues Review

Implement phase (5 May 2004 / 20 May 2004)

- Deployment Plan

4.3 Major Plan Changes

There were two types of plan changes that we encountered
during the project: change in schedule and change in deliv-
erables. Changes in schedules typically occurred in prepa-
ration for phase gates and were presented to ITS manage-
ment during the phase gate accompanied with reasons for
the changes. Schedule changes in earlier phase gates would
also affect the following phase gates. There were no signifi-
cant changes to deliverables although there were additions
for certain meetings.

In preparation for our first phase gate, we realized that
the scope of our project would be too large if we had to
write our own graphing package. Therefore we researched
graphing packages and included a Commercial Graphing
Package Technical Proposal at the Analyze phase gate. This
document led to the purchase of RChart, a graphing pack-

age written in Java.

The Analyze phase gate was originally predicted to be
on January 30t but was rescheduled to February 12t due to
an extended requirements elicitation period. The schedule
change was justified in order to produce a better require-
ment specification. During this phase gate, ITS manage-
ment informed us of the need for an issues log. This became
an additional deliverable at each phase gate and is a con-
tiguous log of issues.

The design phase gate was scheduled for March 12t and
was rescheduled to March 30% due to an extended design
phase and scheduling conflicts between ITS management
and project team. The extended design was due to spend-
ing an extra week researching technologies that could be
used in the design. This resulted in a Technology Compari-
son Paper as an additional deliverable for the design phase
gate. The develop phase was also extended to April 30t, an
additional week to accommodate a more complex design at
the cost of less time for the test phase.

The actual develop phase gate took place on May 3. A
major change occurred as we approached the end of the
develop phase when we determined the need to perform
sufficient testing before delivering code for the develop
phase gate. The develop phase gate became a progress
check meeting while the deliverables in the develop phase
got moved to the test phase gate. The purpose of this
change was to ensure that the delivered code is properly
tested and of sufficient quality.

Test phase gate was officially scheduled for May 14t and
Implement phase gate was officially scheduled for May
20, both deadlines that are dictated by the end of the quar-
ter.

5 ARCHITECTURE AND DESIGN

5.1 Technology Comparison

Our first step in developing the architecture was to research
technologies that could be used to implement the GRM sys-
tem. The primary technologies we did research on were
Web Services, Java RMI, Smart-Client, Java Server Pages
(JSP), and Java Applets. We also included standalone Java
program to ensure that we considered as many solutions as
possible. We performed a compare and contrast of each of
the technologies we felt could provide a good architecture
for the GRM system, considering both advantages and dis-
advantages of each. The details of this research and com-
parison are further documented in the Technology Com-
parison Paper. We determined that Java RMI would be the
underlying communication technology for the GRM sys-
tem.

The advantages of using RMI are a smaller client pro-
gram to be downloaded, less logic and processing in the
client, and minimal parsing of data transferred between
client and server.

5.2 Architecture of GRM System

Web Server - The web server for the GRM system pro-
vides an access point for all authorized users to the GRM
client application. To access the client application, users
have to login to the GRM and the system will spawn the

RIT SOFTWARE ENGINEERING SENIOR PROJECT

main client application on to the client machine. Apache
has been chosen as the web server that will handle authen-
tication and client application delivery.

GRM Server - The GRM server is the server that com-
municates with the client application. The communication
between the client and the server will be implemented us-
ing Java’s RMI technology. An RMI registry will be run-
ning on the server in order to provide naming services to
the remote objects. The GRM server will also handle all the
system’s persistency and logic.

ITS DB - The ITS database provides all the necessary
data that the GRM server requires in order to compute the
correct Report data. The schema and entries of the data-
base are provided by the ITS department. New data can be
added to the database at any time.

GRM Web Applet - The web client of the GRM handles
authentication for the GRM system, and initiation of the
main thin-client application. The web client will communi-
cate with the GRM web server through HTTP and is a com-
bination of HTML and a simple Java applet. It is accessible
by any machine that has a Java class library and common
web browser installed.

GRM Thin Client - The thin-client of the GRM handles
the presentation and user input layer for the GRM main
system. It provides an interface for the user to communi-
cate with the system. The application will be implemented
in Java that utilizes RMI technology to communicate with
the GRM server.

GRM Console - The GRM console is a text based inter-
face that takes commands to execute Reports residing on
the GRM server.

External Program/Script - Any external scripts or pro-
grams can feed text-based commands into the GRM console
for automated execution.

Server Client

(HTML/Applet)
ves GRM Web
Applet

Spawns

~ S

(Java/Swing)
GRM Thin
Client

(Apache)

Web Server

[
@

(Java and RMI Registry)
GRM Server

Operator

<Communica1es> <:
(Java)

: GRM Console
<Communlca1es> T External Program

Figure 5.2.1 - Architecture

5.3 External Software Packages
During the analyze phase we decided that the scope of the
project would become too large if we had to develop our
own graphing package to generate the graphs mentioned in
the High-Level Requirements. That led to research and the
purchase of RChart, by Java4Less, which is a software pack-
age that can generate graphs. Details of this package can be
found in the Commercial Graphing Package Technical Pro-
posal.

Another external software package that was used in the
GRM system is JHotDraw. This package is used as part of

BUEHLER, CHIOU, MYERS, TAM: ITS GRAPHICAL REPORT MAKER

the Graphical User Interface to allow the end-user to build
Reports graphically by drag-and-dropping Elements and
connecting the outputs and inputs between them.

5.4 Design Rationale

The thin-client interacting with a server allows the system
to be distributed and multi-user since the thin-client is
available online. The thin-client is used to build Reports
and is also capable of calling execute and export on the
server. The server provides central persistency, allowing
multiple clients to share the same elements when building
Reports. This also allows the use of a console client to exe-
cute and export the results of Reports that have already
been created by the end-user using the thin-client. The con-
sole client can also be used by external systems, such as
scripts, to execute Reports on a timely basis. An executed
Report can then be exported to an external format, like
JPEG, for displaying on ITS websites.

The purchase of RChart contained the scope of the pro-
ject so we could focus on Report creation, server, graphical
user interface and console interface. The use of JHotDraw
provided an integral component for the Graphical User
Interface.

5.5 Server Side Components

Element
Persistancy

Elements

GRM Gatewa Element DB Connection
y Factory Manager
Executor
ITS DB

Figure 5.5.1 - Server Components

The GRMGateway component acts as the interface be-
tween the client and the server. The primary services that
the server provides to the client are: create a base element,
create a composite element, execute an element and modify
an element. The client uses RMI to call methods on the
server.

The Element Persistency component provides an Ele-
ment database which is a container for all created Elements.
This component provides methods to obtain created ele-
ments, modify the elements, and save. The save method
serializes Elements in the Element database and stores it
into a save file. When the server is first started, the Element
database loads the save file and recreates each Element.

The Element Factory component provides a common in-
terface for creating different types of Elements. When creat-
ing an Element, the type of Element is determined and the
proper Element Factory generates the new Element from
the parameters passed in from the client-side. Elements are
designed to be used together and have the same interface.
They differ in their attribute definition and execution

method.

The Executor and Exporter components are used to exe-
cute Reports and then export the generated results into a
specified external format for example a JPEG of a graph.

The Database Connection Manager component provides
database connectivity with the ITS network performance
database. A singleton DB Connection Manager ensures a
single point of entry to the ITS database as well as save re-
sources by sharing the same connection between any proc-
esses that need a database connection.

5.6 Element Categorization and Types

There are two categories for Elements: base and composite.
A base Element is a single Element of any type. A compos-
ite Element is one that contains more than one Element.

There are three types of Elements: Rover, Operation and
Generator. Rovers have no input references and generate
data for its output. Operations take input(s), perform ac-
tions on the data, and produce output. Generators take in-
put(s) and generate graphical or tabular forms of the data.
Composite Elements are also sorted as one of the three
types, defined by the number of inputs and number of out-
puts. An example of a Rover is Database Rover that re-
trieves data from a database. An example of an Operation is
Add Operation that takes two inputs and produces an out-
put where input one’s dataset is added with input two’s
dataset. An example of a Generator is RChart Generator
that takes inputs and plots the data in a line graph.

5.7 Report Execution

Composite Element

Execute Queue

Figure 5.7.1 - Executing a Report

A Report is defined as a composite Element with no in-
puts and no outputs. Each element contains its own execu-
tion method. Within the Executor is a queue of Elements
executed in sequence. The queue is built by the Executor
when it parses the Composite Element’s composite graph
attribute. Each Element in the Composite is a node in the
graph and the connections between the Elements are edges.
The execution queue is built using a breadth first traversal.
As each Element in the execute queue is executed, it re-
trieves input data from Element(s) in its input reference.

The total effect of executing a Report is retrieving data
from the ITS database, processing it and then generating a
graph that can be exported.

6 QUALITY ASSURANCE AND TESTING

6.1 Issues Log Tracking

An additional deliverable at each phase gate was the Issues
Log. The purpose of this log is to keep track of concerns
that occur during the project. Issues can range from small
tasks that require a few minutes to accomplish or large
quality defects that require significant effort to fix. These
issues are categorized by significance, status and the team
member responsible for following up on the issue.

Having an issues log allows our team to visualize our
progress in each phase and plan our work schedules ac-
cordingly. The issues log provides documented concerns so
that we do not let problems go unresolved.

6.2 Acceptance Test Plan

The Acceptance Test Plan was developed in unison with
the SRS to ensure sufficient coverage of the different per-
mutations of problems that may arise within the GRM sys-
tem. The ATP contains test conditions that may occur for
each use case. During the testing phase we perform each
test case in the ATP to ensure that the GRM system satisfies
the test conditions we determined during the analyze
phase.

6.3 Operational Testing Scenarios

The OTS contains actual testing scripts that are based on
the use cases. Each test script includes input data and de-
scription of possible outputs that denote if the test script
passes or fails. These tests can be out-sourced to QA testers
who will perform each test and provide a Pass/Fail value
for GRM system testing.

7 DELIVERY AND PROVISIONS FOR SUPPORT

For the final phase, the primary deliverable is a Deploy-
ment Plan. This document outlines the procedure to com-
pile and install the GRM system on ITS servers and the ad-
ditional packages or software needed to run the GRM sys-
tem.

Post project support for the system was a topic discussed
during the Analyze and Design phase gates. It was deter-
mined that post project support for the system will be done
by ITS.

8 REFLECTION

Interaction with our client was a smooth process for the
duration of our project. Our point of contact at ITS replied
to emails promptly and was also available to us on AOL
Instant Messenger. Phase gates were all scheduled at least
two weeks in advance. For the first two phases our point of
contact met with us weekly for requirements elicitation.
During design and implement phases, the ITS support team
was responsive to our emails and requests.

Phase Gate meetings were very effective in keeping us
on track as well as communicating project progress to our
sponsors. Each phase gate meeting was an opportunity for
us to interact with ITS management and gain experience in
making presentations and having discussions with higher

RIT SOFTWARE ENGINEERING SENIOR PROJECT

management. The combination of phase gate presentations
and issues log were an effective method for us to keep track
of our schedule and progress.

Keeping an Issues Log, that documents a contiguous log
of problems we encountered or tasks that need to be ad-
dressed, ensured that we did not forget to attend to those
issues. At first we did not fully comprehend the use of the
Issues Log. Therefore we did not use it effectively and it
was always a topic at phase gate meetings with ITS man-
agement.

The Initiate, Analyze and Design phase gates were suc-
cessful and the deliverables produced were satisfactory.
During the Develop phase we started to realize that the
scope of the project is larger than we originally predicted.
During the earlier phases we tried to generalize workings
of the GRM system into Elements. The specification of the
Element led to a complex design and an even more com-
plex implementation as we realized the limitations of our
design. This added complexity to our system was not real-
ized until we were deep into the Develop phase and the
team worked over-time to refine the design.

Another unexpected issue was that we were discouraged
from using a Java application server by our customer. This
preference was not discovered until a week into design and
caused the loss of a week in the schedule. Fortunately the
Technology Comparison Paper provided alternatives and
we were able to switch technologies on the fly.

9 ACKNOWLEDGEMENTS

RIT Information and Technology Services:
- Mark Kimble, ITS Systems Management
- Patrick Saeva, ITS Program Management
- Emilio DiLorenzo, ITS Director
- ITS Customer Support Staff

RIT Software Engineering Faculty Advisors:
- Dr. Jim Vallino
- Dr. Stephanie Ludi

10 REFERENCES

[1] A. Buehler, C. Chiou, J. Myers, and C. Tam, “Planning and Strat-
egy,” unpublished.

[2] A. Buehler, C. Chiou, J. Myers, and C. Tam, “Software Require-
ments and Specifications,” unpublished.

[3] A.Buehler, C. Chiou, J]. Myers, and C. Tam, “Operational Testing
Scenario,” unpublished.

[4] A. Buehler, C. Chiou, J. Myers, and C. Tam, “Acceptance Test
Plan,” unpublished.

[5] A. Buehler, C. Chiou, J. Myers, and C. Tam, “High-Level Design,”
unpublished.

[6] A. Buehler, C. Chiou, J. Myers, and C. Tam, “Detailed-Level De-
sign,” unpublished.

[7] A. Buehler, C. Chiou, J. Myers, and C. Tam, “Technology Com-
parison Paper,” unpublished.

[8] A.Buehler, C. Chiou, J. Myers, and C. Tam, “Commercial Graph-
ing Package Technical Proposal,” unpublished.

