
Instilling a Software Engineering Mindset through

Freshman Seminar

Michael J. Lutz, James R. Vallino, Kenn Martinez, Daniel E. Krutz

Department of Software Engineering

Rochester Institute of Technology

Rochester, NY, USA

Abstract—Student retention is a challenge faced by all

engineering programs. Our first year software engineering

students have schedules filled with computer science,

mathematics, science and humanities. The lack of any exposure to

engineering meant some students, expressing a dislike for

software engineering, left the program before they had any

exposure to the discipline.

To address this issue, we created a one credit Software

Engineering Freshman Seminar, which all entering students take

in their first term at RIT. This lets us insure student/faculty

contact early in the program, as well as providing an opportunity

to introduce engineering concepts and practices early in each

student’s program of study.

This paper discusses the seminar’s current incarnation. In

particular, we focus on those aspects of the course which help

students identify with software engineering as a profession. The

challenge we face is achieving this goal with students whose

technical knowledge and skills are modest. We have settled on an

approach that provides experience with teamwork, requirements

elicitation, and the effects of change, and addressing professional

ethics. These in-class activities are complemented by an

assignment to interview a practicing software engineer and to

write an interview summary for discussion.

This activity ensemble serves to disabuse students of the notion

that software engineering is little more than programming, or

that the discipline is identical to computer science. Should a

student exit the program at this point, at least he or she knows a

bit about what they are leaving behind.

Keywords-first-year seminar; software engineering; teamwork

I. INTRODUCTION

In 1996, the Rochester Institute of Technology (RIT)
launched the first undergraduate software engineering program
in the United States [1][2]. From an initial class of 15, the
undergraduate program has expanded to a current enrollment of
approximately 375 students. While the Department of Software
Engineering has grown to encompass a masters program, the
undergraduate program remains the focal point of the
department’s identity.

Engineering programs seek to prepare engineers who can
define, design, develop and deploy useful, cost-effective, and
maintainable systems; this is no less true of software
engineering than of more traditional disciplines. Traditional

engineering builds upon (but is distinct from) natural sciences
such as physics and chemistry. Similarly, in our view software
engineering has its foundations in computer science, but it is no
more the case that computer science encompasses software
engineering than it is that chemistry encompasses chemical
engineering.

The proof of our philosophy is in its results. First, software
engineering is recognized as an engineering discipline by
ABET, and the first graduates of an ABET-accredited
baccalaureate software engineering program came from RIT. In
addition, software engineering students have great success both
on co-op and after graduation. Across the broad range of
undergraduate computing programs at RIT, our students have
the highest median co-op wages and the highest median salary
upon graduation. Students and graduates work for firms large
and small, and in domains spanning embedded systems, as at
Goodrich Aerospace and Harris RF Communications, through
end-user focused firms such as Microsoft, Apple and Google.
All in all, our program provides a solid foundation for entry
into and continual growth within the world of professional
software development.

II. THE FIRST YEAR CHALLENGE

While our program is successful overall, we face the
challenge of instilling a sense of engineering practice and
professionalism, along with the distinctive perspective of
software engineering, in our first year students. The challenge
is made more difficult by the fact that entering students are
often confused as to where software engineering fits within the
larger framework of computational studies. Software
engineering’s recent emergence as a discipline distinct from
computer science, combined with a first year program of study
that is heavy in math, natural science, computer science, and
the liberal arts, serves to exacerbate this confusion. In the end,
first year students who leave software engineering often did so
as a result of this confusion – they had little knowledge of or
appreciation for the distinctive nature of software engineering.

To address the challenges and confusion outlined above,
our program includes a one credit hour course providing a
broad perspective on the discipline for entering students; over
time, this Software Engineering Freshman Seminar[3] has
evolved into the one we present in this paper. While tuning and
tweaking is regularly taking place, the general structure, topics,
and flow of material has stabilized. As a consequence, students
completing the course have a grasp of some key software

engineering concepts and practices, and can appreciate the role
of their foundation studies as preparation for the software
engineering courses that follow.

III. COURSE GOALS

The overriding course goal is reducing first year attrition in
our program. We know that attrition after the second year is
less than 10%, especially after students complete our
Engineering of Software Subsystems course, where software
design principles and patterns are first discussed in detail. We
decided a bridge was needed to see students through the first
year of the program, where math, science and liberal arts
courses predominate, into the second year where software
engineering per se becomes the curriculum’s focus. Our hope
was to forestall student departures because “I don’t like
software engineering” or “I want to do something besides just
programming.” Certainly students should be free to pursue
interests elsewhere, but we’d prefer they do so based on an
accurate perception of the discipline. Misperceptions, whatever
their cause, should be eliminated.

Our bridge comprises two courses, the seminar described in
this paper and a Personal Software Engineering [4] course
taken at the beginning of the second year. Both serve to forge
bonds between software engineering majors and the faculty in
the department, and to provide distinctive engineering
experiences in conjunction with foundational studies. In this
our program is in line with many similar efforts in other
engineering programs [5][6][7].

For the seminar, we decided to focus on three elements of
software engineering practice that undergird our program and
that can be imparted to students with modest technical
background: product requirements and design, teamwork, and
professional communications. We also saw this as an
opportunity to introduce students to ethics and ethical
professional behavior. Activities throughout the course
illustrate and reinforce these concepts.

With one exception, requirements and design activities do
not involve software. In part this is a concession to the fact that
many students are software development naïf’s, and requiring
them to do development in both the seminar and introductory
computer science would create an unreasonable load. As
important, we wanted students to realize that many engineering
problems they will encounter (as well as their resolution)
require more than the creation of executable code. Thus the
requirements and design activities involve paper mockups and
Lego based exercises rather than executable programs. Even
the one exception, requiring teams to provide enhancements to
Java classes, is small enough so as not to obscure the concepts
being taught.

Our program, in contrast to many computing programs, is
heavily team-based. Indeed, with only two exceptions, all
courses in the program have at least one (and usually several)
team-based projects. In light of this, an early exposure to both
the benefits and costs of working in teams gives first year
students a leg-up on what they will be doing later on in their
studies. It also serves to counter the “lone hacker in a cubicle”
perception of software development so prevalent in the culture
at large. In any event, by the end of the seminar most students

are comfortable working on teams, solving problems larger
than they could address on their own.

The ability to clearly and concisely communicate ideas is as
critical to a software engineer’s career as his or her technical
skills. Indeed, one impetus for developing the curriculum was
recognition of the divergence between the preparation of
graduates from previous computing programs and the needs of
industrial software development firms; poor communication
skills were at the core of the problem. Thus our courses require
significant written documentation and frequent oral
presentations. It is natural to reflect these demands in the
seminar course, though at somewhat reduced formality. Once
again, such activities serve to distinguish software engineering
from other computing disciplines.

Finally, as we are educating future professional engineers, it
is incumbent on us to reinforce the professional responsibilities
and ethical demands of the discipline; there is no reason why
this education cannot begin at the outset of each student’s
studies. Of course professional ethics is an area that is
notoriously difficult (and dull) to teach via lecture; such
approaches often come off as special pleading. In our approach,
we try to balance the need for teaching specific ethical
principles with experiences in which students explore the
ethical ramifications of specific technical decisions.
Unintended consequences, such as epileptic seizures due to
rapidly flashing game screens, provide a rich environment in
which to discuss professionalism.

To provide this view of the breadth of software
engineering, we defined the following learning outcomes for
the Software Engineering Freshman Seminar.

A student will be able to:

1. Identify the principles of the Software Engineering ethics
(e.g. Code of Ethics as recommended by the IEEE
Computer Society and ACM)

2. Identify the major activities of Software Engineering

3. Identify strategies to address issues that can arise in a
team project.

4. Identify the difference between Software Engineering
and other computing disciplines.

5. Apply general concepts to a specific process step,
namely execute a project test plan and, acting as the
quality assurance group, assess the effectiveness of the
test plan for the development team.

6. Explore and describe the responsibilities, working
environment, skills and technologies of a software
engineering professional.

With this background information on our course goals, it is
appropriate to turn next to the specific topics and activities –
the tactics, if you will – by which we strive to achieve these
goals.

IV. TOPICS AND ACTIVITIES

The seminar is heavily oriented towards active learning, as
we've found that this engages students in the material for each

session. This engagement leads to insight and interest in
software engineering, with the consequence that students
acquire a broad perspective on the discipline.

Given the team-based nature of the curriculum, it is no
surprise that most of the work in the seminar requires working
in teams of 3-5 students; to help students become acquainted,
we usually vary the teams from one exercise to another. While
most exercises are completed during class, a few span multiple
meetings, and require the team to meet outside the class period.
Once again, this reflects a situation they will encounter
throughout their software engineering studies.

One issue we frequently have to address is the lack of
(graded) group work in high school. Even in situations where
collaboration is encouraged, at the end of the day most
assignments entering students are familiar with had to be
completed individually. To counter this mindset, we
purposefully focus on the degree of collaboration within teams,
and downplay individual assessments based on project
outcomes. It is true, of course, that peers and instructors
evaluate individual contributions when grading projects in later
team-based courses, but in the seminar it is more important to
have students feel comfortable being assessed as a group. We
seek to encourage open, collaborative approaches to problem
solving as the norm across all the exercises.

The learning outcomes from the previous section are
addressed across the 10-week course, with the emphasis
varying among the activities pursued in any given week.
Initially the focus is on perceptions of the software engineering
discipline, followed by activities related to various phases in a
software development process (e.g., lifecycle activities),
capped by interview sessions with students returning from co-
op and a sample of software engineers from local industry. For
convenience, we classify activities as non-software (applicable
in any engineering context), software (focusing on issues of
particular importance in software engineering), and the "real
world" (via interaction with practicing professionals). The
following subsections expand on activities in each of these
classes.

A. Non-Software Activities

1) Planning and Team Collaboration: In this activity,
while we stress the importance of team collaboration and
communication, we also want the students to recognize the
importance of careful planning. Such planning can mitigate
the unexpected consequences that often prove costly at later
stages of development.

The stated objective is the construction of the tallest Lego
tower, using the kit provided. Often teams immediately begin
assembly, following the first idea from an outspoken team
member, and paying little attention to the future. As the towers
grow, a rule change is introduced: Team members are only
allowed to use their left hands. Students quickly realize that
they can longer function autonomously; rules and protocols are
required for the team's work to continue.

Finally, the requirements are changed - each team is given a
set of wheels and told their tower must move across a table
prior to its height being measured. Naturally, those with flimsy,

unstable towers must rush to reinforce their constructions - this
is a valuable lesson on premature optimization in the face of
continuing changes.

At the conclusion of this activity, all students observe the
performance of each tower - whether it passes the acceptance
test and only then whether it is the tallest. We often hear
comments such as “we did not think of doing it that way” or
“we probably should have spent more time planning what we
were going to do”. Once the tests are completed we have a
class discussion in which the students are asked to reflect on
the activity as it relates to software products with which they
are familiar.

2) Disruptive Teamwork: In this activity, teams of 4-5
students are set to the task of preparing a short presentation on
a software engineering topic. Unbeknownst to most of them,
one member of teach team is a "mole," selected by the
instructor. The moles are pulled aside on some pretext, and
told to be disruptive during their team's meeting. Typically
instructors give a variety of disruptive roles from which to
choose. The goal is to introduce common team problems and
see how the team as a whole reacts.

We are continually impressed by the thespian abilities of
our moles and the energy they put into their roles. In the past,
we've had moles who demand to be in charge of the team, who
tried to get their colleagues to watch YouTube videos with
them, who challenged each and every idea other team members
proposed, and who even entered the team space, put their head
on the table, and went to sleep. As one might expect, by the end
of the 30 minute team session the other team members are
annoyed (to put it mildly).

At the conclusion of the exercise, the teams reassemble in
their classroom. The instructor then exposes the mole on each
team, as well as the particular disruptive behavior each mole
was assigned. Groups then work on the real presentation: How
they handled their "problem" member and what they might do
in a similar situation in the future. Presentations are followed
by a class-wide discussion of the advantages and disadvantages
offered by teams.

3) Professional and Ethical Responsibilities: The session
on professional and ethical issues is preceded by an out-of-
class assignment to read and comment upon the Software
Engineering Code of Ethics developed by the ACM and the
IEEE Computer Society [8]. In the class session, this is
expanded upon via a short lecture on related topics, including
health and safety, moral and government guidelines, and
ethical behavior in the workplace.

Students then form teams and develop a short skit on one of
the specific topics covered in the Code of Ethics or in class.
Students generally have fun with this assignment and their skits
usually illustrate their topic effectively (and often humorously).
Following each skit, a focused discussion takes place related to
the skit's topic. In particular, students are asked to reflect on
real world situations related to the topic and how they might
deal with the resulting situations.

B. Software Activities

1) Defining and Describing Software Engineering: One of
the earliest activities centers on the meaning of software
engineering as a discipline. Students are asked to work in
teams to create a short presentation or brochure to be delivered
to their former high school. Teams are given an example
presentation (one used during open houses, and familiar to
many of the students), along with an outline of topics to
consider for inclusion. The topics include the differences
between software engineering and other computing
disciplines, the relationship between software and our rapidly
changing world, and the range of career opportunities within
the field.

We know that students are largely ignorant of the ethical
issues involved in plagiarism [9]. The presentation provides an
excellent venue, early in their studies, to present these issues,
along with advice on how to avoid plagiarism. As part of the
activity, students are required to provide proper citations, and
we also offer guidance on abiding by rules of ethical academic
behavior.

Given the proliferation of internet resources of widely
varying quality, we also introduce students to ways of
identifying credible, trustworthy, and informative sources. Key
points include verifying the original source of a work,
determining the work’s publisher, and finding the last revision
date.

Having spent a week on this activity, several are selected to
make a formal presentation. A resulting class discussion on the
merits of the content, style and sources increases student
appreciation of the software engineering profession’s place in
the context of an expanding and ever changing technical world.

2) Challenges of Requirements Elicitation: At the
midpoint of the term, students participate in a second Lego
project, this one to build a house to a customer’s specification.
The goal is to expose students to the difficulties of both
eliciting and conforming to customer expectations.

At the outset, each team is provided with the basic
requirement that the team must build a Lego house satisfying a
customer's requirements. Instructors and course assistants
prepare by identifying a simple set of requirements such as a
minimum of two rooms, a window in each room, a roof, etc.
Elicitation spans three iterations; during an iteration, each team
has the opportunity to ask three specific questions (queries like
“what do you want the house to look like?” receive short, direct
and ambiguous replies).

Teams soon realize that they must carefully consider which
questions to ask and how to frame them in order to maximize
the useful information received. Course assistants enjoy acting
as customers during this activity, and revel in truthfully
answering questions so as to reveal as little information as
possible. Question: "Does the house have windows?" Answer:
"Yes, the house has windows.”

At the end of the 30 minutes devoted to the activity, each
team shows the house they built and how it meets the
requirements as they understood them. Normally, no two
houses are even vaguely similar, reinforcing the problems of

obtaining accurate and useful information from customers.
Students see firsthand how requirements can be interpreted in
radically different ways. Overall, the exercise reinforces the
importance of maintaining a continuing conversation with the
customer, while working to ensure the real requirements are
understood and the customer’s desires are satisfied.

3) Software Process Methodology: We introduce the
notion of a development process via a version of the Extreme
Programming (XP) game, using a variant of Joe Bergin’s
coffee machine planning game[10]. XP is used because it
allows teams to make headway in the face of changing
requirements; in particular, it emphasizes evolutionary
development with small, incremental releases.

 Each student team designs a vending machine on paper,
where the machine must conform to prioritized, predefined user
stories. Students in each team assume one of three distinct
roles: customer, developer, or monitor. Customers establish
machine feature priorities using their own opinions combined
with an estimate from developers as to the effort needed to
include the feature. Developers add features to the vending
machine from most to least important; in the second and later
iterations, this includes integration and refactoring of what was
done previously. Moderators are part coach, part referee,
monitoring communications between customers and
developers, and ensuring the process stages are properly time
boxed.

At the conclusion of the exercise, student teams compare
the resulting systems, recognizing that they all started with the
same user story set. The class ends with discussion of the
process, what went well and what caused problems, and the
effect of the different roles on estimation and prioritization.

4) Team Design and Implementation: The longest activity,
spanning two weeks, is the Robocode[11] project. Robocode
itself provides a framework for simulated battles between
programmable, robotic tanks. In addition to the battlefield,
automated scoring, and various graphic and sound effects,
Robocode provides an API for creating new tanks.

In this activity, we introduce pair-programming, and have
pairs of students develop their own unique robot from a
skeleton we provide. In the first class, each team sketches the
behavior they want to implement, and then works on its tank
for the remaining time. Near the end of class, all the teams’
tanks (as well as a few from the Robocode library) are placed
in the arena and the battle begins. After all the flashes, sounds,
and mayhem subside, students see where their robot ranks.

Between class sessions, and at the start of the second week,
each pair hones its robot based on the first week’s results. At
the end of the second week, another section-wide battle is
waged, with each section’s winning robot submitted to the final
battle royale at the end of the term. The team that emerges
victorious from the final battle has its robot memorialized by a
small trophy with a toy tank on top.

The goal of this activity is less about improving student
programming skills than it is about working in pairs to develop
a software system over several iterations. In addition, planning
an adaptive strategy to exploit other tanks’ weaknesses
reinforces the need for a well-considered and flexible design.

5) Cross-Team Testing: Near the end of the term, teams of
students from the seminar pair with teams from our second
year Introduction to Software Engineering course in a cross-
team testing exercise. Each seminar team acts as an
independent test team, performing acceptance tests from a test
plan prepared by their paired second year development team.
We encourage the test teams to take initiative, and expand
testing of functionality and usability beyond the boundaries of
the test plan.

Both the first year and second year students gain valuable
lessons from this exercise. The first year students gain testing
experience, and see for themselves the significance of usability
design and the importance of validation. In particular, the
acceptance test drives home the connection between
requirements and black box testing; students realize effective
testing does not require access to the source code. The second
year teams, in addition to the obvious benefit of having their
test plan exercised, see actual users struggle with or delight in
the systems they produce.

C. Exposure to the Real World of Software Engineering

Near the end of the term, we turn our attention to software
engineering in the world outside of RIT. The primary vehicles
for this are a panel discussion with upper-division students and
local software developers, as well as a paper summarizing an
in-depth interview with a software engineer in industry. These
activities are designed to expose students to the real life
activities of software professionals, to foster increased interest
in and curiosity about the profession, and to clarify any
remaining misconceptions regarding work in the field.

As preparation for the panel session, each student submits a
set of questions they would like answered. They know that the
panel will consist of upper-division students who have
completed several co-op blocks, as well as practicing
professionals, many of whom are alumni of the program. As a
consequence, the questions range from the mundane (“how do I
find housing while on co-op?”) to the profound (“what non-
technical skills do you find most useful?”). On the whole, our
experience has been that students appreciate the opportunity to
learn from those with experience, and as a result have a better
idea as to whether or not software engineering is the career for
them.

The interview paper requires students to find a software
developer to interview, to arrange an interview by email or
(preferably) over the phone, and to summarize the interview
and their analysis of it in a written document. We place a few
restrictions on the selection of an interviewee: the person must
be engaged in software development or management, may not
be a close relative of the student, and may not be selected by
more than one student. Occasionally students are unable to find
anyone; if the instructor is persuaded that the student made an
honest effort, the instructor may tap into his or her professional
network for a colleague who will agree to be interviewed.

To overcome student inertia, we provide an initial set of
generic questions to help frame the discussion. However,
students must supplement what is provided by specific
questions of their own. In the best of all worlds, the students
have a conversation with the person they select, and such

conversations frequently lead to wide ranging discussions that
enhance the student’s understanding of software engineering.

Each student submits a transcript of the conversation and a
document reflecting on what he or she learned. Students often
describe their preparation, thoughts, and expectations prior to
the interview, along with unexpected discoveries as a result of
the interview.

The “final exam” is actually a class-wide, collaborative
reflection on the course as a whole and the interviews in
particular. Once again, students are divided into groups, where
they compare experiences and compile a list of observations as
to what they have learned during the term. When the class gets
together again, teams share these observations. Occasionally
instructors impose some structure on the proceedings, such as
having teams create mind maps for the course; other instructors
take a more freewheeling approach in the interest of
spontaneity. Whatever the approach, the class usually ends on a
high note with students able to articulate what makes software
engineering different.

V. EVALUATION

Part of our curriculum internal assessment is based on
student feedback. The opportunity to provide course-specific
feedback is afforded to students at the end of each school term
via an online anonymous survey. Table I contains student
course evaluation data from the last two years when we ran the
version of Software Engineering Freshman Seminar discussed
in this paper. The columns range from Strongly Agree (SA) to
Strongly Disagree (SD) from left to right.

The feedback received in the course’s latest incarnation
helps validate both the individual class activities as well as
overall student learning. Recurring themes are an appreciation
for hands on team activities in a software engineering context,
the understanding of how software development benefits from
process, and the importance of communication between teams
and customers.

TABLE I. STUDENT COURSE EVALUATION DATA

Question SA A N D SD

I learned a lot in this course. 17.7 54.4 19.7 7.5 0.7

In general, the out-of-class
assignments were relevant to the

course.

38.8 49.0 8.8 2.7 0.7

In general, the in-class activities

were relevant to the course.

53.1 37.4 5.4 4.1 0.0

Overall, I would recommend this

course.

43.7 33.8 16.9 3.5 2.1

Following are representative samples of written feedback
we have received:

As I understand it, what I just took in this course
was already a rework. Keep it!!! This "intro" course to
software engineering was fantastic! It was really great,
my favorite course by far!

I enjoyed Software Engineering Seminar and I
think it made me feel certain that I'm in the right
major, and that I have a thorough understanding of

what Software Engineering is like outside of the
classroom.

This course was very informative, and fun. This is a
great course and it gives you a great idea about what
Software Engineering is like and starts to prepare you
for what lies ahead.

We continually struggle with how to impress upon our
entering students that software engineering is much broader
than the programming they may have done through high
school, and even the material they will see in introductory
computer science courses. This is a reprise of the concern
expressed at the start of the paper that students leave the
program before they have seen any engineering. In particular,
they need to see that software engineering will not relegate
them to a lifetime of low-level coding.

For most of our students, this realization does not really set
in until after they have been out on co-op. Our hope is that
Software Engineering Freshman Seminar helps students move
towards that realization at the outset of their college studies.
Based on the following comment, our hope for the course was
met, at least for one student:

I felt this interview was very useful. It opened my
eyes to how great SE-101 [Software Engineering
Freshman Seminar] was. I’ll admit I didn’t feel like
some of the projects were that useful. Until this
interview I was a little disappointed we didn’t do more
coding in class. However, I found that we actually
covered the most important topics, like communication,
and working with others. It really opened my eyes to
what software engineering is really like.

For many students, this first introductory experience
reaffirms their desire to pursue a career in software
engineering.

VI. FUTURE EVOLUTION

We expect the seminar course to continue evolving in the
future. In particular, RIT’s impending switch from academic
quarters to semesters has forced us to reconsider some of the
pedagogy. Our present 10-week course with one two hour
meeting per week will expand to a 15 week course with one or
two meetings per week. Activities which currently require a
full two hours to complete will have to be rewritten or replaced
in light of these constraints.

A particular challenge will be process activities, such as the
XP game, that require extended time to be effective. One
possibility, inspired by field trips in biology and zoology, is to
schedule one or two long activities for a weekend, with, of
course, sufficient food and refreshments to entice students to
participate. The feasibility of such an approach is up for
discussion.

We also see a role for expanded coverage of intellectual
property issues. Currently we only address these in the context

of proper citation of other’s work, but much more could be
included that is accessible to first year students. Certainly
software engineers need be cognizant of the role played and
restrictions imposed by copyrights, trade secrets, and patents.

VII. CONCLUSION

When the term software engineering was first coined, it was
mostly an aspiration and a metaphor. Over the past 45 years the
term has come to signify a new and exciting engineering
discipline. The seminar course we’ve described is one way in
which that excitement can be communicated to the next
generation of professional software developers.

ACKNOWLEDGMENTS

We would like to acknowledge the many student course
assistants who have helped run this course. They have not only
engaged students during class time, but also were responsible
for creating content for two of the class sessions. Another
invaluable service that they provide is to aid our freshmen
students in their adjustment to college life. We regularly note
interactions between the course assistants and students in the
seminar that are more about how to navigate the ins and outs of
the RIT campus and systems than how to set the color of the
team's Robocode tank turret using Java.

REFERENCES

[1] M. J. Lutz and J. F. Naveda, “The Road Less Traveled: A Baccalaureate
Degree in Software Engineering”, Proc. 28th SIGCSE Technical Symp.
on Computer Science Education, March 1997.

[2] F. Naveda, M. J. Lutz, J. R. Vallino, T. J Reichlmayr, and S. A. Ludi,
"The Road We’ve Traveled: 12 Years of Undergraduate Software
Engineering at the Rochester Institute of Technology," Proc. Int. Conf.
on Information Technology: Next Generations, Las Vegas, NV, April
2009.

[3] K. Martínez, (2011, September 8). SE 101 Freshman Seminar [Online].
Available: http://www.se.rit.edu/~se101

[4] M. J. Lutz and T. J. Reichlmayr, "A Course for Developing Personal
Software Engineering Competencies", Proc. ASEE Annual Conf. and
Exhibition., June, 2012.

[5] S. S. Courter and K. J. B. Anderson, “First-year Students as
Interviewers: Uncovering What It Means to Be an Engineer,” Proc. 39th
ASEE/IEEE Frontiers in Education Conf., October 2009.

[6] D. Troy, D. S. Keller, J. Kiper and L. Kerr, “First year engineering:
Exploring engineering through the engineering design loop,” Proc. 38th
ASEE/IEEE Frontiers in Education Conf., October 2008.

[7] R. L. Porter and H. Fuller, “A new ‘contact-based’ first year engineering
course,” Proc. 27th Annual Frontiers in Education Conf., October 1997.

[8] D. Gotterbarn, et. al., "Computer Society and ACM Approve Software
Engineering Code of Ethics," IEEE Computer, October 1999.

[9] M. A. Fitzgerald, "Making the Leap from High School to College,"
Knowledge Quest 32 (March/April 2004).

[10] J. Bergin, (2001, July 27). Learning the Planning Game: An Extreme
Exercise [Online].
 Available: http://csis.pace.edu/~bergin/xp/planninggame.html

[11] Robocode version 1.7.3.5 (2012, March 11). [Online].
Available: http://robocode.sourceforge.net

