
248

Chapter XIII
Software Engineering
Accreditation in the

United States
James McDonald

Monmouth University, USA

Mark J. Sebern
Milwaukee School of Engineering, USA

James R. Vallino
Rochester Institute of Technology, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

This chapter provides a brief history of the accreditation of software engineering programs in the United
States and describes some of the experiences encountered by programs in achieving their accreditation
and by program evaluators in reviewing those programs. It also describes how the accredited programs
have addressed the most difficult issues that they have faced during the accreditation process. The au-
thors have served as leaders of the accreditation efforts at their own institutions and as ABET program
evaluators at several other academic institutions that have achieved accreditation. The objective of
this chapter is to provide those software engineering programs that will be seeking accreditation in the
future with some of the experiences of those who are familiar with the process from both the programs’
and the evaluators’ points of view. Leaders of programs that are planning to request an accreditation
review will be well prepared for that review if they combine the information contained in this chapter
with the recommendations contained in Chapter XIX of this text.

INtrODUctION

The history of software engineering education
dates to the generally accepted origin of the
software engineering discipline in 1968. This

year is associated with the first NATO conference
on software engineering in Garmisch, Germany.
Tomayko (1998) points out, however, that the same
year also marked what is apparently the first of-
fering, by Douglas Ross at the Massachusetts In-

 249

Software Engineering Accreditation in the United States

stitute of Technology, of an academic course with
the term “software engineering” in its title. For a
variety of reasons, considerable time passed before
courses with significant software engineering
content became more common (Tomayko, 1998;
Duggins 2002). Beginning in 1977, a number of
graduate programs in software engineering were
developed and began operation, including those
at Seattle University, Texas Christian Univer-
sity, and the Wang Institute of Graduate Studies
(Tomayko, 1998). At the undergraduate level, a
number of computer science and computer engi-
neering programs incorporated one or two courses
in software engineering, typically taught using
survey textbooks that offered reasonable breadth
but relatively little depth. Although undergraduate
software engineering programs began to emerge
internationally as early as 1985 (Joint Task Force
on Computing Curricula, 2004), it was not until
1996 that the Rochester Institute of Technology
initiated what was to become, in 2003, one of
the first four software engineering programs to
receive accreditation in the United States; the other
programs in this group were offered by Clarkson
University, Milwaukee School of Engineering,
and Mississippi State University.

While we recognize that software engineering
programs in other countries have been accredited
by accrediting agencies in those countries, this
chapter addresses only the history and experi-
ences of software engineering programs that have
achieved accreditation in the United States. It is
hoped that the material presented here will be of
value to software engineering educators in both
the United States and around the world.

AbEt AND ENGINEErING
PrOGrAM AccrEDItAtION

ABET, Inc., formerly known as the Accredita-
tion Board for Engineering and Technology, is
the recognized accreditation body in the United
States for college and university programs in

applied science, computing, engineering, and
technology. It is a federation of professional and
technical societies (28 at present) representing
those fields. ABET accreditation activities are
managed by four commissions; the two most
directly related to software engineering are the
Engineering Accreditation Commission (EAC)
and the Computing Accreditation Commission
(CAC). Like other engineering disciplines, soft-
ware engineering falls under the EAC, while
the CAC is responsible for computer science,
information systems, and information technology.
In possible contrast to some other disciplines,
accreditation has historically been an expected
attribute of United States engineering programs,
and is thus an important concern for software
engineering educators.

Each discipline has an associated “lead so-
ciety”, which is one of the member societies of
ABET. This society has primary responsibility for
defining discipline-specific accreditation criteria,
as well as for selecting, training, and evaluating
program evaluators. Initially, the lead society for
software engineering was the Institute of Elec-
trical and Electronic Engineers (IEEE), which
prepared the original version of the software
engineering program criteria (Engineering Ac-
creditation Commission, 1999, p. 47), discussed
later in this chapter.

With the integration of ABET and the Com-
puting Sciences Accreditation Board (CSAB) in
November 2001, CSAB took over the role of lead
society for software engineering, and the IEEE
became a “cooperating society.” Unlike the IEEE
and most other member societies of ABET, CSAB
is not itself a membership society. Instead, the
current members of CSAB are three other profes-
sional societies: the Association for Computing
Machinery (ACM), the IEEE Computer Society
(IEEE-CS), and the Association for Information
Systems (AIS).

From the point of view of a software engi-
neering program seeking initial accreditation,
the process begins with a request for evaluation,

250

Software Engineering Accreditation in the United States

which must be submitted by January of the year
in which an evaluation visit is being requested.
Since ABET policies require that a program have
at least one graduate at the time of the evalua-
tion visit, the request for evaluation is generally
submitted in the year when the first graduates
are anticipated.

Of course, the work of program and curriculum
definition must begin much earlier. It is common
for program faculty to attend ABET faculty
workshops and to send representatives to training
sessions for ABET program evaluators, in order
to gain familiarity with the accreditation criteria,
process, and practices. The program must also
define its educational objectives and outcomes,
discussed in more detail below.

Once the request for evaluation has been sub-
mitted, the next task is to complete the self-study
report, which provides detailed data and evidence
to show that the program meets the applicable ac-
creditation criteria. The self-study report is based
on an ABET-provided template (Engineering
Accreditation Commission, 2007a) and must be
submitted by the end of June during the year in
which the request was made.

The evaluation visit takes place in the fall. The
visiting team consists of a team chair (usually a
member of the EAC) and at least one program
evaluator (PEV) for each program to be evalu-
ated. The minimum team size is three members
(ABET, 2006, p. 8), so it is possible that two
program evaluators may be assigned to a single
program if no other program is being evaluated
during the same visit. Prior to the visit, the pro-
gram evaluator examines the self-study report
and related materials such as student transcripts.
Ongoing communication with the program leader-
ship helps to resolve as many issues as possible
before the team arrives on campus. During the
visit, the evaluator interviews faculty members
and students, examines additional materials such
as examples of student work, evaluates facilities,
and gathers any other necessary information.

During an exit session at the end of the visit,
the accreditation team provides the institution with
a summary of its evaluation. After the visit, the
program has the opportunity to submit additional
evidence, primarily to address any shortcomings
that were identified during the visit. The team
chair and program evaluators then prepare a draft
statement of their findings, which is sent to the
institution for comment. The final version of the
statement incorporates any changes resulting from
the institution’s “due process” response and is sent
to the EAC for final action during the summer after
the visit. If accreditation is granted, it is common
practice to extend accreditation retroactively to
the prior year graduates, since it was their work
and curriculum that were examined during the
accreditation review.

crItErIA FOr AccrEDItAtION

The current engineering accreditation criteria
(Engineering Accreditation Commission, 2007)
are based on a major revision originally known
as Engineering Criteria 2000 (often abbreviated
as “EC2000” or “EC2K”). Prior versions of the
criteria focused on detailed prescriptions and, in
the view of many engineering educators, limited
opportunities for flexibility and innovation. The
revised criteria adopted an approach of setting
general goals and assigning to individual programs
the responsibility for demonstrating achievement
of those goals through appropriate assessment
and evaluation.

Each of the ABET criteria for accrediting
baccalaureate-level engineering programs ad-
dresses a specific area of concern. During 2007,
changes to the numbering and organization of the
criteria were proposed, as indicated in Table 1;
these changes will take effect for the 2008-2009
accreditation cycle.

Despite the change in organization, the content
of each of the areas of concern has remained fairly

 251

Software Engineering Accreditation in the United States

stable from the introduction of the EC2000 criteria
until the present time. The criteria are:

Students. For historical reasons, the criteria
first address the relationship between an engi-
neering program and its students, even though
logically it would make more sense to begin with
the program educational objectives and outcomes.
Programs are required to evaluate students and
monitor their progress, while providing both cur-
ricular and career advising. Specific note is made
of the need for effective policies and procedures
for the admission of transfer students, granting of
transfer credit, and verification that all students
meet all program requirements.

Program Educational Objectives. Since the
initial introduction of the EC2000 criteria, there
has been a continuing evolution and clarification
of the terminology used to specify the results that
an engineering program strives to achieve. By
the current definition, the program educational
objectives deal with the broad career and profes-
sional accomplishments for which graduates are
being prepared. It is common for the program
leadership and faculty to consult with employers
and other stakeholders to ensure that the program
objectives accurately reflect the environment in
which the program’s graduates will work. Since

these achievements relate to performance after
graduation, the program’s success in this regard
cannot, in general, be determined until some time
has passed. Even then, it may be difficult to as-
sess the program’s contribution to the individual
graduate’s success in meeting these longer-term
objectives.

A program’s educational objectives are
expected to be consistent with its institutional
mission and to communicate its specific goals
to potential students and to the public at large. A
typical program objective might be, “Graduates of
the program are expected to obtain employment
in the software development industry and/or to
enter graduate school within six months after
graduation.”

Program Outcomes. To complement the pro-
gram educational objectives, programs are also
required to define and assess program outcomes,
which are narrower statements that describe the
knowledge and skills expected of students at the
time of graduation. The underlying assumption
is that this knowledge and skill will provide the
basis for achievement of the longer-term career
and professional achievements. This criterion
requires that a set of eleven specific outcomes be
incorporated (often referred to as “a-k” because of

Area of Concern
Criterion

(2007-2008)
Criterion

(2008-2009)
Students Criterion 1 Criterion 1

Program Educational Objectives Criterion 2 Criterion 2
Program Outcomes Criterion 3 Criterion 3

Continuous Improvement Criteria 2-3 Criterion 4
Curriculum Criterion 4 Criterion 5

Faculty Criterion 5 Criterion 6
Facilities Criterion 6 Criterion 7
Support Criterion 7 Criterion 8

Program Criteria Criterion 8 Criterion 9

Table 1. Areas of concern covered in each ABET criterion

252

Software Engineering Accreditation in the United States

the way they are enumerated), but programs are
free to articulate additional outcomes. A typical
outcome is: “By the time students have gradu-
ated from the program they must demonstrate
the ability to apply knowledge of mathematics,
engineering and science,” which is outcome a) in
the specific list of outcomes.

Historically, programs have been encouraged
to formulate their own outcomes based on their
specific program objectives. These program-spe-
cific outcomes are often designed to incorporate
the “a-k” outcomes. For example, a software engi-
neering program might adopt a program outcome
related to designing software components and
systems, implicitly referencing the “3(c)” outcome
that deals with designing a system, component,
or process within realistic constraints.

However, defining a complete set of program-
specific outcomes can also mean extra work for
the program in preparing for an accreditation
visit, since it is then necessary to demonstrate
student achievement of both the “a-k” and the
additional “program-defined” outcomes. One
alternative is to augment the standard “a-k”
outcomes by articulating a small number of ad-
ditional outcomes, if the program judges that the
generic outcomes are not sufficient. The proposed
2008-2009 engineering criteria omit a previous
requirement that the program must “formulate
program outcomes” related to the program ob-
jectives, perhaps suggesting a shift away from
program-specific outcomes.

Continuous Improvement. The requirement
for ongoing actions to improve the program,
previously called out in the context of program
objectives and outcomes, has become a separate
criterion in the proposed 2008-2009 draft. Pro-
grams are required to show evidence for these
actions, which are expected to be based on the
results of assessment and evaluation processes
called for in the criteria related to program objec-
tives and program outcomes.

Curriculum. This section of the engineering
criteria has two major parts. The first deals with

minimum standards for curriculum content. The
curriculum must include at least one year (typi-
cally 32 semester credits or 48 quarter credits) of
college-level mathematics and basic sciences. At
least some of the basic sciences course work must
include experimental experience. A minimum
of one and one-half years (48 semester credits
or 72 quarter credits) of engineering topics is
also required. The engineering topics consist of
engineering sciences and engineering design.
The curriculum is also required to incorporate a
general education component that complements
the technical content, but no quantitative specifica-
tions are mandated for this component.

One question for software engineering pro-
grams is whether some computer science content
can be used to meet the “mathematics and basic
science” requirement. This type of accounting
seems quite reasonable, since the relationship
between computer science and software engineer-
ing resembles that between, for example, physics
of mechanics and mechanical engineering. In
addition, many computer science topics are math-
ematical in nature. However, there is at present no
explicit policy on this matter, so many programs
have taken a defensive position that ensures the
credit requirement is met using course content
consistent with a more traditional definition of
mathematics and basic science.

The second part of the curriculum criterion
imposes a requirement that students be prepared
for engineering practice through the curriculum
and that this course work culminate in a major
design experience that incorporates engineering
standards and multiple realistic constraints. The
requirement for a major design experience is often
addressed by a “senior design project” course or
course sequence.

Faculty. The criterion related to the program
faculty addresses three primary concerns. First,
the number of faculty members and their compe-
tencies must be sufficient to cover all curricular
areas of the program, while also assuring that
faculty members have time to advise and in-

 253

Software Engineering Accreditation in the United States

teract with students, support university service
activities, continue their own professional devel-
opment, and maintain links with practitioners
and employers.

Second, the program faculty must be invested
with sufficient authority to provide effective guid-
ance for the program and to define and execute
processes for assessment, evaluation, and con-
tinuous improvement of the program’s objectives,
outcomes, and curriculum.

Third, the criterion provides guidance for
evaluating the competence of the faculty, citing
factors such as education, diversity, engineering
experience, teaching effectiveness, communica-
tion ability, scholarship, participation in profes-
sional societies, and professional engineering
licensure. In addition to these traditional mea-
sures, the criterion also makes explicit the need
for “enthusiasm for developing more effective
programs” (Engineering Accreditation Commis-
sion, 2007, p. 3), perhaps recognizing the personal
and communal investment that is required to
institute and maintain effective assessment and
improvement processes.

Facilities. Programs are required to ensure
that classrooms, laboratories, and equipment are
adequate and that they provide an atmosphere
conducive to learning, foster student-faculty in-
teraction, and support professional development
and activities. Students must have opportunities
to learn the use of modern engineering tools and
adequate computing facilities must be available
to support both students and faculty.

Support. Programs must have, and demon-
strate that they have, the institutional support
and financial resources needed to maintain the
faculty and facilities. This criterion also explicitly
requires adequate support personnel and institu-
tional services. Specific mention is also made of
the need for “constructive leadership” to assure
the quality and continuity of the program.

Program Criteria. The general engineering
accreditation criteria are intended to apply across
widely disparate engineering disciplines. While

this commonality and consistency is valuable, it
is also understood that each discipline may have
its own specific requirements. To address these
issues, the engineering criteria incorporate sets
of program-specific criteria, which are (at least
nominally) limited to curricular topics and fac-
ulty qualifications. The applicability of a given
set of program criteria is determined by the
name of the program; for example, a program in
“computer and software engineering” would be
expected to meet the program criteria for both
computer engineering and software engineer-
ing. When multiple sets of program criteria
are applicable, overlapping requirements need
only to be satisfied once. The program criteria
for software engineering are discussed in the
following section.

PrOGrAM crItErIA FOr
sOFtWArE ENGINEErING

As noted above, program criteria are limited to
curricular topics and faculty qualifications. The
curriculum-related portion of the current software
engineering program criteria (Engineering Ac-
creditation Commission, 2007, p. 18) states two
primary requirements.

First, the curriculum is required to provide
breadth and depth across the range of engineering
and computer science topics implied by the title
and objectives of the program. Except in unusual
cases (e.g., a program that focuses on applying
software engineering to aeronautics or to financial
modeling), this will normally imply compliance
with an accepted “community” definition of the
software engineering discipline. Two such defi-
nitions are given in the Guide to the Software
Engineering Body of Knowledge (2004) and in the
undergraduate software engineering curriculum
guidelines prepared by the Joint Task Force on
Computing Curricula (2004).

Second, the curriculum section of the program
criteria for software engineering requires that the

254

Software Engineering Accreditation in the United States

program demonstrate a number of specific student
outcomes. While these mandated outcomes are
not really “curricular topics”, there is precedent
for requirements of this type in the program
criteria for many other disciplines (Engineering
Accreditation Commission, 2007, pp. 5-18).

The software engineering program criteria
require the program to demonstrate that gradu-
ates have the ability to analyze, design, verify,
validate, implement, apply, and maintain soft-
ware systems. Although the term “analyze” has
a generic engineering meaning, in this context it
is generally understood to refer to requirements
analysis. Graduates must also be able to apply,
in the context of complex software systems,
discrete mathematics, probability, statistics, and
relevant topics in computer science and support-
ing disciplines.

Additionally, the program must demonstrate
that graduates have the ability to work in one or
more significant application domains. In itself,
this requirement does not dictate any particular
curricular content, but it does imply some course-
work or other experience beyond core software
engineering and computer science topics. Some
existing software engineering programs have
chosen to require specific courses in one or
more application domains such as embedded
software, gaming software or web applications.
Other programs have defined a set of elective
course sequences, in a variety of areas, allow-
ing students to choose according to their own
interests. A few programs have adopted both of
these strategies.

In regard to faculty qualifications, the current
program criteria for software engineering do not
impose any additional requirements. Effective for
the 2001-2002 accreditation cycle, the program
criteria were amended to require that “those fac-
ulty teaching core software engineering material
have practical software engineering experience”
(Engineering Accreditation Commission, 2000, p.
16), but that section was later deleted (Engineer-

ing Accreditation Commission, 2002, p. 22) with
little public explanation for the change.

GrOWtH OF AccrEDItED
sOFtWArE ENGINEErING
PrOGrAMs

The first undergraduate program in software
engineering in the United States was started
in 1996 at Rochester Institute of Technology.
Since that program took root and showed the
viability of an undergraduate software engineer-
ing program, there has been a steady growth in
the number of programs, with several new ones
started each year. This has happened despite the
general downturn in undergraduate computing
program enrollments since 2000 (Computing
Research News, 2007). There are currently 35
programs leading to an undergraduate degree
in Software Engineering. Through the summer
of 2007, fifteen of these programs have been
accredited by ABET. The Rochester Institute
of Technology program graduated its first class
of baccalaureate-level software engineers in
May 2001. The first four programs applying
for accreditation had their campus visits in fall
of 2002, and received accreditation approval
in the summer of 2003. The EAC granted the
Rochester Institute of Technology program an
extended grandfathering which covered their
May 2001 class. That gave the program the dis-
tinction of awarding the first ABET accredited
BS in Software Engineering degrees. Figure 1
shows the growth in both the total number of
undergraduate software engineering programs
and the number of accredited programs.

cUrrENtLY AccrEDItED
PrOGrAMs

Table 2 lists the fifteen software engineering
programs accredited by ABET as of 2007. All

 255

Software Engineering Accreditation in the United States

Name of Institution Year Accreditation Awarded
Auburn University 2005
Clarkson University 2003
Embry-Riddle Aeronautical University (Florida) 2005
Fairfield University 2006
Florida Institute of Technology 2004
University of Michigan-Dearborn 2005
Milwaukee School of Engineering 2003
Mississippi State University 2003
Monmouth University 2005
Penn State University – Erie 2006
Rochester Institute of Technology 2003
University of Texas at Arlington 2004
University of Texas at Dallas 2006
Rose-Hulman Institute of Technology 2007
University of Wisconsin - Platteville 2007

Table 2. Year when program was accredited

Figure 1. Number of undergraduate software engineering programs

256

Software Engineering Accreditation in the United States

of these programs award a Bachelor of Science
degree in Software Engineering. The programs
have a range of student populations from 30 to
over 400.

EXPErIENcEs OF PrOGrAMs
AND PrOGrAM EVALUAtOrs

The authors have completed informal on-line
surveys of both software engineering programs
that have been accredited by ABET and the ABET
program evaluators who have been involved in
reviewing those programs. We have supplemented
the data gathered in those surveys with our per-
sonal experiences as program evaluators and as
program leaders to characterize the experiences
of programs that have been accredited.

Both programs and program evaluators report
that the programs that have been accredited have
typically had little difficulty meeting the require-
ments of the Facilities and Support criteria.
However, both programs and program evaluators
report that several programs have had to take
action, sometimes significant action, to meet the
requirements of the Students, Program Edu-
cational Objectives, Program Outcomes and
Curriculum criteria. Survey results indicate a
few cases of disagreement, or even contention,
between programs and program evaluators, spe-
cifically in the areas of faculty qualifications and
curricular topics. The next two sections of this
chapter highlight evaluation findings related to the
criteria that have resulted in improvement actions
by the software engineering programs and those
criteria which have caused some tension between
programs and their evaluators.

crItErIA rEsULtING IN
IMPrOVEMENt ActIONs bY
PrOGrAMs

Many programs reported that they have adopted
automated grade tracking and degree audit sys-
tems that are being used to replace some regular
face-to-face student advising. This has made it
more difficult to demonstrate that student progress
is being properly evaluated and monitored by
the faculty for conformance to program require-
ments as required by the Students criterion. A
few programs found that they were not advising
and monitoring their students carefully enough.
This sometimes resulted in students not complet-
ing all of the courses required by the program,
usually due to course substitutions that were done
without appropriate review. The programs that
have had this problem have generally tightened
their advising, monitoring and course substitution
approval processes.

Most programs have had difficulty meeting
the Program Educational Objectives criterion.
These objectives represent achievements that stu-
dents would be expected to reach after graduation.
As such, the data are not under the program’s
direct control. One program commented:

“Assessing educational objectives is difficult. You
must rely on outside information to get assess-
ment data, and it is difficult to get enough results
to make a reasonable measurement. Traditional
alumni survey completion rates are very low and
when the number of graduates is relatively low, it
is difficult to get enough data from alumni survey
results. Employer surveys are equally difficult to
get unless you have dedicated employers that hire
a large number of your graduates.”

The Program Educational Objectives crite-
rion requires a process, based on the needs of the
program’s constituents, in which the objectives
are determined and an ongoing evaluation of the
extent to which the objectives are being attained,

 257

Software Engineering Accreditation in the United States

the result of which must be used to improve the
program.

Programs have sometimes created their
Program Educational Objectives without the
involvement of the program’s constituencies or, in
a few cases, without even explicitly defining those
constituencies. To avoid this problem, successful
programs have usually defined their constituents
very explicitly in their self-study report. The
constituents described are usually the program’s
students, the program’s faculty and an industrial
advisory committee representing potential em-
ployers of the program’s alumni. Some programs
have added parents of students, administrators of
the institution and the state or region’s economy.
Reasonable and acceptable Program Educational
Objectives have typically been created by first
having the faculty draft a set of six to eight specific
things that they would expect their graduates to
achieve within a few years after graduation. Then
these objectives are discussed with, and perhaps
modified by, an industrial advisory committee,
after forming such a committee if one doesn’t
already exist. A description of the interaction with
constituents is documented and the objectives are
published, usually in the institution’s catalog, on
the program’s web site and in any materials being
used to market the program. Some have developed
employer surveys to get feedback on achievement
of Program Educational Objectives and a few
have modified the wording of their educational
objectives to eliminate misunderstandings of the
wording.

Most programs seeking initial accreditation
have found it very difficult to measure achieve-
ment of their objectives by the time of the first
evaluation visit, which usually occurs in the fall
after the first alumni have graduated from the
program. About the only thing the program can
practically do within those few months is to in-
formally speak with members of their industrial
advisory board who may have hired the program’s
first graduates to get feedback on their opinions
about the students’ likelihood of meeting the

objectives. Some programs have put off this step
until several months after the visit and simply
describe what the program is planning to do to
evaluate achievement of the objectives.

In the period following the introduction of
the EC2000 criteria, a common source of diffi-
culty was confusion among program leaders and
program faculty about the differences between
educational objectives and program outcomes.
Self study reports frequently made the objectives
and the outcomes sound very similar to each other.
Sometimes programs have used the same set of
capabilities in describing the objectives and the
outcomes and have simply grouped them in differ-
ent ways. The intent of the ABET criteria is that the
objectives and the outcomes are clearly different
things. The easiest way to distinguish them from
each other are that the outcomes should be things
that students are expected to achieve by the time
they graduate while the objectives are career and
professional accomplishments which they would
be expected to achieve after graduation. As time
has passed program leaders and faculty seem to
have become more familiar with this distinction
and the confusion has been diminishing.

Some programs and evaluators noted issues
with the Program Outcomes criterion. One
program, which was using student portfolios
as the primary method for assessing outcomes,
augmented their collection and evaluation of
student portfolios based on suggestions made
by the program evaluator. This augmentation
involved developing very explicit instructions for
students describing what they should include in
their portfolios, how it should be organized and
a rubric for use by the faculty describing how to
evaluate the portfolio contents.

With regard to the specific “a-k” outcomes,
some programs expressed difficulty sufficiently
demonstrating achievement of: f) an understand-
ing of professional and ethical responsibility;
h) the broad education necessary to understand
the impact of engineering solutions in a global,
economic, environmental, and societal context;

258

Software Engineering Accreditation in the United States

i) a recognition of the need for, and an ability to
engage in life-long learning; and, j) a knowledge of
contemporary issues. They have usually developed
additional methods for measuring these outcomes
and sometimes have developed new courses or
added content to existing courses.

Some programs have had difficulty in com-
plying with the requirements of the Curriculum
criterion related to the culminating major design
experience. This program component must pro-
vide a significant software engineering design
experience to each student. In some cases this
“capstone” experience may fall more into the
realm of research than design or fail to incor-
porate appropriate engineering standards and
constraints. Programs encountering this problem
have had to develop methods to ensure that their
projects have significant design content, that the
work was clearly and completely documented,
and that engineering standards and constraints
were appropriately considered.

tHE MOst DIFFIcULt IssUEs

While the survey results indicated a good deal of
agreement between program leaders and program
evaluators, there were some exceptions. Specifi-
cally, there was some evidence, of inconsistency,
and even some contention, related to faculty
qualifications and curricular content.

Program leaders generally reported no prob-
lems related to faculty qualifications. However,
several program evaluators expressed concerns
regarding a low proportion of faculty with true
breadth and depth of experience in software
engineering. This issue seemed to arise primar-
ily in software engineering programs housed in
computer science departments. As one evaluator
stated, “It is sometimes difficult to agree with
established CS programs adding an SE program
that they have sufficient breadth and stability in
SE to satisfy the ABET criteria.”

Another concern of some evaluators related to
the isolation of some software engineering faculty
members, who seemed to have little involve-
ment with the software engineering practitioner
community and with the software engineering
education community.

PEVs noted a need for all faculty to be
aware of and be involved with the ABET/EAC
procedures and self-study preparation. The
problem most frequently observed across all
criteria has been defining appropriate and vi-
able assessment and evaluation processes. Even
when adequate processes have been defined,
PEVs often identify problems with faculty
compliance. To satisfy the requirements of
outcomes assessment, the program faculty
members must be committed to ongoing execu-
tion of the defined processes. Most programs
and evaluators understood that the Outcomes
Criterion requires the direct measurement
of student outcomes via capstone projects,
portfolio evaluations or specific quiz or exam
questions. However, almost all agreed that the
overhead required to do this rigorously placed
a high burden on the programs, particularly
for programs that had decided to evaluate all
outcomes and all students every year.

As noted previously, the software engineering
Program Criteria require appropriate curricular
content. Several evaluators commented that there
were problems with programs’ interpretations of
the breadth and depth of software engineering
material required to satisfy these criteria. They
said that these problems have most frequently been
seen when programs are developed from a base
of a computer science or a computer engineering
curriculum.

Two programs reported that they have had
problems with a specific program evaluator’s
interpretation of the requirements related to Pro-
gram Criteria. These evaluators, they say, were
looking for coverage of a specific topic area, such
as software evolution, as part of the maintenance
activities which students are required to be able

 259

Software Engineering Accreditation in the United States

to do by the time they graduate according to this
criterion.

In the case of programs that have had problems
with curricular content, faculty members have
sometimes felt that they were already covering
many of the required software engineering topics.
By requiring students to take specific existing
computer science courses and adding a software
engineering capstone course to the curriculum,
they felt that they would meet the breadth and
depth requirements.

The programs that have been most successful
in satisfying the curriculum requirements of the
program criteria have linked their curricula to
accepted frameworks such as the Guide to the
Software Engineering Body of Knowledge (2004)
and Joint Task Force on Computing Curricula
(2004) and have made these links explicit in
their course syllabi, by describing which courses
cover which topics outlined in those documents.
The number of specific software engineering
courses in these programs usually ranges from
six to twelve. Typically those courses cover 50%
to 80% of the topics specified in the referenced
documents.

While the program criteria do require breadth
and depth of software engineering content, it is not
necessary that these topics be covered in specific
“software engineering” courses. However, if this
content is embedded in other (e. g., computer sci-
ence) courses it must be very clear from the course
syllabi and from the work done by students that
the software engineering topics are, in fact, being
covered. It is a common expectation that at least
some of these courses employ textbooks that ad-
dress a variety of advanced software engineering
topics, and that they do not rely primarily on the
small number of commonly used introductory
software engineering textbooks.

IMPrOVEMENts MADE

The variety of improvements that have been made
as a result of assessment and preparation for ac-
creditation visits is extremely long. This section
will summarize a subset of those with which the
authors are familiar.

For the requirements related to Students, a few
programs have found that they were not advising
and monitoring their students carefully enough.
This sometimes resulted in students not complet-
ing all of the courses required by the program,
usually due to course substitutions that were done
without appropriate review. The programs that
have had this problem have typically tightened
their advising and monitoring processes to insure
that the problem does not happen in the future.

Several programs have formed new industrial
advisory committees and gotten them deeply
involved in helping to specify Program Educa-
tional Objectives. A few have developed employer
surveys to get feedback on achievement of pro-
gram educational objectives and at least one has
modified the wording of its objectives to eliminate
misunderstandings of the wording. Based on our
experience, with our own programs and with
programs that we have evaluated, we believe that
the greatest benefits to the programs have been
the improved relationships between the programs
and local industry that have resulted from the
involvement of industrial advisory committees
in the accreditation process.

In response to shortcomings identified in the
Program Outcomes area and to the measurement
of specific outcomes, many programs have modi-
fied the content of specific courses, usually with
small changes to assure that prerequisite courses
were meeting the expectations of instructors in
later courses. Some programs have developed
specific courses to assure that students were devel-
oping an understanding of professional and ethi-
cal responsibilities. Others have developed new
methods and courses for assuring that students
were receiving a broad education, recognizing the

260

Software Engineering Accreditation in the United States

need to engage in life long learning and developing
an understanding of contemporary issues. All of
these improvements were made as direct results
of measurements indicating that student learning
results were below expectations for one or more
of the specified outcomes.

To effectively demonstrate compliance with
the requirements for a major design experience by
the Curriculum criterion, some programs have
provided additional encouragement for students
to document their engineering processes, design
approaches and their consideration of engineer-
ing standards and multiple practical constraints
in their design projects.

To address shortcomings related to faculty
experience and competencies to cover all cur-
ricular areas, as required by the Faculty criterion,
a few programs have added one or more faculty
members. Typically they have taken advantage of
existing open positions or of planned retirements
to add these resources. To strengthen faculty
guidance and oversight, some programs have
decided to encourage faculty member participa-
tion in workshops related to ABET accreditation
and assessment.

To meet the Program Criteria requirements
for curricular breadth and depth, a number of
programs have modified their courses and their
curricula to insure that adequate coverage of topics
such as verification, validation and maintenance.
Some have developed completely new courses to
address missing content or to provide additional
depth in certain areas.

While few of the programs from which data
were collected reported unexpected benefits, those
who have made improvements uniformly reported
that the improvements made were beneficial
and should have been made, with or without an
accreditation process. In several cases program
leaders agreed that the results of the accreditation
review gave them leverage with both members of
their faculty and with their institutions’ adminis-
tration to make appropriate improvements. And,
finally, all agreed that having ABET accreditation

gives credibility to their programs by certifying
that their software engineering program is a real
engineering program.

FUtUrE DIrEctIONs

At the time this chapter was being written, there
were 35 undergraduate software engineering pro-
grams being offered by colleges and universities
in the United States. Fifteen of them have been
accredited by ABET. It appears likely that most
of the remaining programs, which are not yet
accredited, will be seeking initial accreditation
within the next few years.

 Finally, the National Academy of Engineer-
ing has made a recommendation that the master’s
degree should become the first professional degree
accepted for entry into the engineering profession.
Currently, ABET allows only one degree level at
each institution in each field of engineering to be
accredited. If the master’s degree becomes the
entry point into the engineering profession, that
would imply a policy or practice change for ABET
to allow accreditation at both the masters and
bachelors level or to award accreditation primar-
ily at the masters level. There are several good
arguments for and against each of these proposals.
Only time will tell if any change will be made and
what form that change is likely to take.

rEFErENcEs

ABET. (2006). Accreditation policy and procedure
manual. Baltimore, MD. ABET, Inc. Retrieved
May 13, 2007, from http://abet.org/forms.shtml.

 Computing Research News (2007), 2005-2006
Taulbe Survey, May 2007.

Duggins, S. L., & Thomas, B. B. (2002). An
historical investigation of graduate software
engineering curricula. Proceedings of the 15th

 261

Software Engineering Accreditation in the United States

Conference on Software Engineering Education
and Training (CSEET’02), Los Alamitos, CA,
IEEE Computer Society Press.

Engineering Accreditation Commission. (1999).
Criteria for accrediting engineering programs:
Effective for evaluations during the 2000-2001 Ac-
creditation Cycle. Baltimore, MD. ABET, Inc.

Engineering Accreditation Commission. (2000).
Criteria for accrediting engineering programs:
Effective for evaluations during the 2001-2002 Ac-
creditation Cycle. Baltimore, MD. ABET, Inc.

Engineering Accreditation Commission. (2001).
Criteria for accrediting engineering programs:
Effective for evaluations during the 2002-2003 Ac-
creditation Cycle. Baltimore, MD. ABET, Inc.

Engineering Accreditation Commission. (2002).
Criteria for accrediting engineering programs:
Effective for evaluations during the 2003-2004 Ac-
creditation Cycle. Baltimore, MD. ABET, Inc.

Engineering Accreditation Commission. (2007).
Criteria for accrediting engineering programs:
Effective for evaluations during the 2007-2008
Accreditation Cycle. Baltimore, MD. ABET,
Inc. Retrieved May 13, 2007, from http://abet.
org/forms.shtml.

Engineering Accreditation Commission. (2007a).
Engineering self-study questionnaire. Baltimore,
MD. ABET, Inc. Retrieved May 13, 2007, from
http://abet.org/forms.shtml.

Guide to the Software Engineering Body of
Knowledge (2004), Bourque, P. and Dupuis,
R., (Eds.), Los Alamitos, CA, IEEE Computer
Society Press.

Joint Task Force on Computing Curricula. (2004).
Software Engineering 2004: Curriculum Guide-
lines for Undergraduate Degree Programs in
Software Engineering. IEEE Computer Society
and Association for Computing Machinery.

Tomayko, J. E. (1998). Forging a discipline: An
outline history of software engineering education.
Annals of Software Engineering 6(1998), 3-18.

