
Session

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

1

DESIGN PATTERNS: EVOLVING FROM PASSIVE TO ACTIVE LEARNING

James Vallino1

1 James Vallino, Rochester Institute of Technology, Department of Software Engineering, 134 Lomb Memorial Dr., Rochester, NY 14623
jvallino@mail.rit.edu

Abstract - Students in Rochester Institute of Technology’s
Software Engineering program gain an appreciation for the
importance of design in their second year when they work on
a term-long team-based software project. Student comments
often express an eagerness to be taught more about the
design of larger software systems. Our next course,
Engineering of Software Subsystems, aims to achieve that
outcome. This paper describes the evolution of this design
course. The course was initially delivered as three one-hour
lectures and one two-hour lab per week. Particularly in
lectures, the students were not engaged to actively learn the
material. The course has taken several evolutionary steps
moving from its initial low level of active learning to where
it now is mostly under the control of student teams
participating as active learners. Data from one offering of
the course suggests improved course evaluation ratings and
a noticeable increase in student appreciation for the
textbook.

Index Terms – Active learning, Design patterns, Problem-
based learning, Software engineering education.

SOFTWARE DESIGN IN THE RIT PROGRAM

The program at Rochester Institute of Technology (RIT)
leading to the Bachelor of Science in Software Engineering
was the first undergraduate software engineering program in
the United States. This program is administered by the
Department of Software Engineering which is within the
Golisano College of Computing and Information Sciences.
The program graduated its first class in 2001 and was among
the first software engineering programs to undergo ABET
accreditation visits in the fall of 2002. From its inception
the emphasis of our program has been to educate students
with strong technical software engineering skills so they can
start work as productive members on a software
development team. In our view this requires a balance
between the design of software systems and the process for
developing those systems.

The students in our program spend their first year and
one quarter of their second year studying the fundamentals
of object-oriented programming. These courses cover topics
in basic programming, object-oriented technology, data
structures, and algorithms with simple complexity analysis.
The courses are offered by the Department of Computer
Science and are common for the Computer Science,
Computer Engineering and Software Engineering programs.
We expect this sequence of four 10-week courses to develop

solid programming skills in the students. Design discussions
stay at rather low levels considering questions, such as,
which nouns might represent objects in the system or state
within the objects and which verbs are behaviors in an
object. Beyond this there is little discussion of overriding
principles motivating the design activity.

The next course in the sequence is SE361 Software
Engineering. The main component of this course is a term-
long team-based project. Teams of 5 or 6 students are the
norm. This course is an introduction to software engineering
practice. It covers topics such as roles on a software
development team, software development lifecycles,
requirements specification, design principles, and user
interface design. Each team develops a product following
the lifecycle from requirements through to product delivery.
It is in this course when they develop larger scale systems
that our students first begin to appreciate the importance of
design. In reflective comments at the end of the course
students identify the need for the team to spend more time in
design discussions before starting to write code. They also
identify that their design skills are not really adequate to
handle the design of these larger systems with a larger
number of classes interacting in new ways. The students
express an eagerness to be taught more about designing
larger software systems.

The second course in our software engineering program
is SE362 Engineering of Software Subsystems. The course
is commonly referred to as the “patterns course” since
design patterns are at the course’s core. The course work is
based on [1]. Since design is one of the pillars supporting
our curriculum and the students are eager to gain more
knowledge in the design of software systems it is very
important that this course “gets it right.” In this course we
begin to cultivate an engineering perspective for the
development of software systems.

SOFTWARE DESIGN PATTERNS COURSE

The overall objectives for our Engineering of Software
Subsystems course were described in [2]. We define the
learning objectives for all of our software engineering
courses in terms of Bloom’s Taxonomy of cognitive learning
[3]. It is common for our lower-division courses to have
learning objectives at only the lower four Bloom taxonomy
levels. As seen in Table I this is indeed the case for the
course discussed in this paper. Throughout the evolution of
the pedagogy for this course these learning objectives have
remained constant.

Session

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

2

TABLE I

LEARNING OBJECTIVES FOR RIT’S ENGINEERING OF SOFTWARE
SUBSYSTEMS COURSE

Taxonomy Level Learning Objectives
Knowledge 1. list the design pattern classifications

2. identify the classification of a pattern
Comprehension 1. contrast different implementations of a pattern

2. contrast the difference in intentions between
structurally similar patterns

3. discuss the general effects of design pattern usage
on design principles such as cohesion and coupling

Application 1. demonstrate the use of patterns in isolated software
subsystems

2. apply appropriate patterns in the design of a small
software system

Analysis 1. analyze the design of a software system to identify
logical components

2. select appropriate design patterns to refactor an
existing design

3. compare design tradeoffs between different patterns
and/or different implementations of the same
pattern

4. compare the benefit of pattern usage versus non-
usage

REVIEW OF THE INITIAL APPROACH

The course described in [2] was initially taught in a
traditional lecture/lab format. This format was “another day,
another pattern” with each lecture covering material for
another pattern. Labs in the first half of the 10-week term
were one week exercises highlighting individual patterns.
Students worked on a team project in lab activities through
the second part of the term. The pedagogy for the lecture
component was primarily didactic passive learning.

Our first step toward engaging the students as active
learners occurred when we started teaching the course in a
studio classroom. Each two-hour class session started with a
traditional lecture on a pattern and immediately reinforced
the material with a class exercise. This placed a constraint
on the size of the problems that could be posed. After the
initial lecture, there was often only 45 minutes for groups of
2 or 3 students to work on a class exercise. By necessity
many of the exercises were guided programming
assignments where the students were told to “put your code
here”. The groups had a strong focus on completing the
exercise even though a 25% grading curve was meant to
allow teams to explore the problem space and not get
complete solutions. The interactions with the instructor
were almost exclusively aimed toward solving the specific
exercise and only rarely sought deeper insights into the
design pattern being discussed. Also, because of the limited
scope of each exercise it was not easy to direct the students
toward reflection on what they had done or to make
comparisons between different pattern topics.

This redesign of the course benefited from the
immediate reinforcement of the material discussed in the
first part of the class period by the exercises completed in

the second half of each class period. This format, however,
still had the instructor doing a large amount of lecturing on
pattern topics at lower levels of the Bloom taxonomy.
During the lecture time class assessment techniques such as
“one minute papers” and “think-pair-share” were often used
to move the students from a passive to active mode of
learning. Still the students would come to class without
doing any preparatory reading even though they knew that
they would complete a class exercise on the new material.
They counted on the lecture to provide the necessary
background.

The insight for a potential way in which to address these
lingering concerns came at the “How to Engineer
Engineering Education” Workshop[4] in July 2002.
Bucknell University sponsors this workshop as part of their
NSF-sponsored Project Catalyst[5]. One of the last sessions
at the workshop discussed the advantages and disadvantages
of Problem-Based Learning (PBL)[6]. The next section
provides background into problem-based learning pedagogy.
Following that are the details of how our Engineering of
Software Subsystems course adapted PBL as its pedagogy
with “lectures on-demand.”

PROBLEM-BASED LEARNING

Problem-based learning is methodology which fosters active
learning by the students. This pedagogy has been applied in
medical education[7] and there have been previous reports
of its application to engineering education[8, 9]. Like all
active learning approaches it centers learning on the student
rather than the instructor. Using the solution of problems
posed by the instructor to motivate learning, it shifts the
instructor from the “sage on the stage” to a “guide on the
side.” There are several characteristics of PBL[6]. To gain
the benefit of PBL small teams of students work on a set of
open-ended problems. The instructor identifies suggested
reference materials. Depending on the level of the students
and the objectives for the course the instructor can provide
more or less in the way of reference materials. For this
second-year course it is absolutely essential that the students
have good resources. For the course discussed in this paper
[1] is an excellent reference. The student teams direct their
learning activities to acquire the additional knowledge that
the team believes is needed to generate a solution to the
problem. Through this process the instructor is available as
an additional resource and to ensure that a team does not get
misdirected by its own efforts.

The PBL methodology mimics the professional practice
of the engineering disciplines where most learning is
motivated by efforts to solve a problem. With this
methodology, the instructor has a mentoring role providing
knowledge that is sought by active student learners.

PBL APPLIED TO TEACHING DESIGN PATTERNS

As noted in the review of the initial delivery in the studio
classroom, too much passive learning remained. The first

Session

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

3

part of most class sessions felt like a series of “another day
another pattern” lectures.

Currently the course is divided into four units of
material. For each unit, the students receive a list of reading
assignments, a detailed specification of the learning
outcomes for that particular unit and a unit assignment. The
outcomes contribute to the overall outcomes for the course.
Lectures are planned at the start of each unit. For the most
part, additional lectures are delivered “on-demand” when a
student places a lecture request in a course discussion group
one day prior to class. Class time is spent with the unit
teams working on unit activities.

Grading is evenly split between individual and team
assessment. The individual assessment is a system design in
unit 1 and a unit quiz at the end of the other three units.
There are also individual mid-term and final exams.
Students receive a team grade for all unit team activities.
This grade is adjusted individually based on peer evaluations
that are done by each unit team member.

The instructor’s time during class is spent in discussions
with each unit team. This is the instructor’s time to gauge
the progress of the team overall and individuals on the team.
During these discussions the instructor can ask questions of
the team or individuals for both class assessment and to
stimulate thinking and learning about the material. As a
class assessment the instructor may decide that the class is
generally missing a particular point and this could trigger a
lecture or discussion of some examples in the next class
session. The team uses this time to ask questions for
clarification of the unit assignments and to receive early
feedback from the instructor on those assignments. The
intention is that the students are responsible for reading the
reference material. The discussions that take place during
class time are, for the most part, addressing higher-level
issues with software design using the design patterns under
study in the course.

PATTERNS COURSE SYLLABUS

As noted above, RIT’s Engineering of Software Subsystems
course is divided into four units. The first unit (1 week)
motivates the use of patterns. Each of the following three
units (3 weeks) addresses specific design patterns. Our
current syllabus covers the topics listed in Table II.

TABLE II

CURRENT COURSE TOPICS
Unit Topics

1 Course Basics; Design Principles
2 Adapter, Iterator, Composite, Singleton, Factory Method,

Observer, Builder, Template Method
3 Facade, Command, Memento, Mediator, Visitor
4 Decorator, State, Strategy, Chain of Responsibility, Proxy

The Unit 1 activity is a design problem. The material

gets the students working on design and working in teams
from the start. The work also introduces the notion that

there is no right or wrong design necessarily. There are ten
learning outcomes for the first unit. Samples of these
outcomes are shown in Table III. Bloom’s Taxonomy is not
used to classify the unit learning outcomes though they do
map onto the course’s learning outcomes that are classified
with Bloom’s Taxonomy.

TABLE III

SAMPLE UNIT 1 LEARNING OUTCOMES
After completing this unit the student will be able to:
1. Describe the logistics for the running of this course
2. List the assessment mechanisms that will be used in this course along

with their percentage contribution to the final course grade
3. Define the principles of coupling and cohesion
4. Explain why coupling and cohesion are antagonistic principles
5. List the names of some common design patterns

In the first class the instructor covers the organization of
the course and discusses design principles that will be
considered throughout the course. The design principles
review some that were covered in their first software
engineering course. After that short introduction, the
students are given a design problem to solve using the
design skills that have been developed through 4 quarters of
computer science programming courses and 1 software
engineering course. The students are encouraged to discuss
the problem with one or two other students. At the
beginning of the next class each student will individually
submit a first cut at an object-oriented design for the
problem. Students are assured that they will receive most
credit for the assignment if they exhibit due diligence in
completing it. A full and complete design is not sought.
The second class is divided into three parts. First, groups of
three or four students will work together to create a
consensus design incorporating the best aspects of the
individual designs. Next, some of these designs are
presented to the entire class. In the last part of this second
class, the instructor leads a discussion of ways in which
groups of classes in these designs relate to each other and to
the solution of the problem. Especially where there are
commonalities, the instructor will point out where
established patterns were used by one or more designs and
motivate the advantage of discussing the design at this
subsystem level rather than an individual class level.

The remainder of the term is divided into three units
which each cover a set of patterns as shown in Table II.
Each unit has the same structure composed of three
components: 1) a detailed list of learning outcomes, 2) a set
of questions related to the patterns being studied in the unit,
and 3) a design and implementation exercise.

The learning outcomes for the unit have some that are
common to all patterns and additional outcomes specific to
the individual patterns in the unit. A selection of the
learning outcomes for unit 2 is shown in Table IV. The unit
outcomes cover the range of levels where this course is
positioned in Bloom’s Taxonomy. Some unit outcomes are
pure knowledge memorization. The outcomes common to

Session

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

4

all patterns fall into this category. Students have a clear idea
of what they are expected to know for each section of the
course and for each individual pattern covered.

The second and third components of each unit make up
the unit team activity. A unit team is composed of 3 or 4
students. Unit teams change for each unit in the course.
Creation of the unit teams is both student self-selected and
instructor assigned. For the future, we are considering using
learning style inventories to guide formation of the team.
The unit team submits a solution for the unit questions and
design activity. All students on the team receive a common
grade for the assignment individually adjusted by a factor
computed from peer evaluations.

TABLE IV

SELECTION OF UNIT 2 LEARNING OUTCOMES
At the end of the unit, for each pattern studied, you should be able to:

1. state the intention
2. state the motivation
3. draw the structure of the pattern
4. identify the participants and describe their responsibilities
5. specify the applicability of the pattern
6. suggest sample application areas including at least one

application not discussed in the textbook

Adapter
1. explain the tradeoffs of class vs. object adapters
2. contrast the ease of overriding adaptee behavior with class and

object adapters
3. explain the use of two-way adapters

Singleton
1. describe how the number of instances is controlled by a

singleton
2. describe the client collaborations with the singleton object
3. explain why a singleton is equivalent to a global variable

The unit questions are written so that some are a

straightforward discussion of textbook material. Other
questions require students to expand on concepts presented
in the textbook or relate ideas that are not directly compared
by the authors. Answers to these questions require more
thought but can still be obtained from the reference material.
At this second-year level we provide a more structured
problem set than may be the case for typical problem-based
learning exercises. Each unit will have between 10 to 20
questions that the unit team must answer. A list of some
typical unit questions is shown in Table V.

TABLE V

TYPICAL UNIT QUESTIONS
1. Iteration over a recursive composite structure can be tricky using an

external iterator. What are the problems with this? How can you
accomplish this?

2. The C++ implementation of class adaptation specifies the use of multiple
inheritance. How would this be implemented in Java?

3. Let methodA() and methodB() both be methods declared in the current
class or one of its super classes, and assume that methodA() calls
methodB(). Is methodA() always, sometimes, or never an example of
the Template Method pattern? Justify your answer in terms of the pattern
as presented in the text.

4. Consider the interface java.util.Collection, which is implemented by the

java collection classes. One of the methods defined in the interface is
iterator(). Is iterator() a Factory Method? Why or why not?

5. One of the methods all classes inherit from java.lang.Object is
toString(), which can be overridden to provide a suitable string
representation for any object in a given class. Is toString() a Factory
Method? Why or why not?

6. How can a Builder enforce semantic constraints, i.e. certain parts are
valid only when within another part, certain parts must be installed
before/after other parts? Suggest methods that a Builder can use to
handle a violation of semantic constraints.

The unit design and implementation activities are

created to highlight the current unit’s patterns. The instructor
emphasizes to the students that the design should make
appropriate use of design patterns and clearly show its
capability for expansion and coverage of all problem
requirements. The implementation is intended to be a proof
of the design concept and will have requirements that are a
subset of the overall design requirements. For example, one
activity was the design of a drawing editor. The team was
required to have a design that could accommodate many
drawing elements, different persistent storage file formats,
and several interaction modes. The design was graded for its
ability to cover this span of requirements. The
implementation was required to handle a subset of the design
requirements, namely, rectangles and lines with a small set
of properties, one very simple file format and an interface
with only menus and toolbars. One unit implementation is
in Java and another is in C++.

The design and implementation activity for the last unit
is different. All too often students can make it through an
entire computing curriculum having only done “greenfield”
assignments. Rarely will students have class assignments
that do not start with a fresh sheet of paper. Students in
RIT’s computing programs typically gain experience with
non-greenfield projects on their co-op assignments. In
reviewing co-op evaluations, students will often comment
that they were completely unprepared to work within an
established code base. The Unit 4 design activity addresses
this weakness. Each unit team is given the final code and
documentation for a student project submitted in the
introductory software engineering course. This is the team-
based project course that most students in Engineering of
Software Subsystems completed within the last term or two.
These projects are typically 1 – 1.5 kSLOC in size. The
project is from one or two years back so that few students
had this as their project and the instructor absolutely ensures
that for those students who had done this project their
submission is not the one selected.

All teams work with the same code base. The first task
is to reverse engineer the code and extract the design
identifying any pattern usage that is found. Having been
prepared by a student team, the documentation may be of
limited value for this part of the activity. After gaining an
understanding of the as-built design each team will then
propose a refactoring of the code base following the design
principles that are stressed in the course and applying their

Session

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

5

newly gained knowledge of design patterns. The unit team
is not required to implement the refactored design.

COURSE GRADING

Collaborative learning activities should provide the
opportunity for mutual interdependence and individual
assessment. The grading structure that this course uses does
provide that since even though all work for the course is
done in unit teams the course grading is based on both
individual and team assessment. Table VI shows the course
grade structure. Individual and team assessments are equally
weighted in the computation of a student’s final course
grade. The individual unit quizzes help assure that teams
will not solely use a “divide-conquer-copy-paste” approach
to answering the unit questions. Each student is individually
responsible for achieving the learning outcomes for each
unit and must demonstrate this on the unit quiz. The unit
quizzes have questions that primarily address the knowledge
and comprehension levels of outcomes for the unit. Mid-
term and final exams pose large scale design problems that
each student must individually solve. Grading emphasis is
on appropriate application of design patterns and adherence
to design principles such as coupling and cohesion.

TABLE VI

COURSE GRADING STRUCTURE
Individual Components Percent

Exams (10, 20) 30
Unit 1 design problem 5
Unit quizzes (3 * 5) 15

Team Components
Unit questions (3 * 5) 15
Unit design/implementation exercises (2 * 10) 20
Refactoring exercise 15

CLASSROOM SESSIONS

The unit teams use the classroom sessions primarily to work
on their unit activities. This is a guaranteed time that unit
teams can use for collaborative interaction. Other scheduled
class activities include: unit quizzes, mid-term exam,
discussion of unit questions at the end of each unit, and team
presentation of unit design and implementation solutions.
The classroom activities in unit 1 were already discussed.
Each pattern unit starts with a short overview of the patterns
for that unit. Lectures are also scheduled on refactoring and
anti-patterns. Beyond that all other lecturing is done “on-
demand.” Students request to hear discussion of a particular
topic by placing a lecture request in a course electronic
discussion group within 24 hours of the class. If no request
is made the unit team has the entire 2-hour class session
available for their use.

During the class session the instructor actively works
with each unit team for short periods of time. During these
interactions the unit team can ask questions of the instructor
or request feedback on their design and unit question
answers. The instructor also asks questions to guide the

team in desired directions or to assess the understanding of
the unit material by individual members of the team. Having
provided the students with a detailed list of the learning
outcomes for each unit the responsibility is placed on the
students to achieve those outcomes. The necessary
information can be found in the resource materials or the
student can make a lecture request to use the instructor as an
additional resource. The instructor’s time in class is freed
from lecturing on topics which are low on the cognitive
scale. The responsibility for that has been shifted to the
students. Lecturing is only done in response to an expressed
demand. The discussion is more effective since it is
presented to an interested audience. With lecturing greatly
diminished (rarely more than 3 hours over a 12 hour unit)
class time is more productively used in engaging discussions
with the student teams. Questions from the students are
motivated by their need to answer the unit questions or use
newly learned knowledge of design patterns in a real design.
The discussions are most often related to whether a
particular approach in the team’s design is an appropriate
use of a pattern or if it is use of a pattern at all. The
instructor’s interactions guide the students to explore the
fundamental intentions of the design patterns and to make
comparisons of different approaches. This has the students
actively considering the tradeoff decisions they must make
in their designs. The students are beginning to develop their
core engineering skill of tradeoff analysis. The development
of software is moving from being simply a programming
task to a higher-level engineering task.

DISCUSSION

There is both anecdotal and quantitative evidence showing
the success of problem-based learning delivery of this course
material. Conversations with students and a review of
written comments on course evaluation forms show strong
support for the format. The negative comments received
mostly were complaints about the course workload. This has
been addressed by the course syllabus presented in this
paper. The first PBL version of the course had a multi-phase
term-long project running concurrent with the unit activities.
This was too much activity and the students had great
difficulty keeping track of the various activities. The current
syllabus eliminated the term project and merged some of
those activities into the implementation activity in each unit.
Few comments (< 10%) were negative about the problem-
based learning delivery itself. More typical were comments
such as the following:

“PBL is a great way to teach a course but the work was
a little much. I think students are more interested and
learn more in PBL. All CS and SE courses should be
PBL.”

“I thought the PBL was a very good idea because that
is how I learn best. I felt like I learned much more in
362 than I did in 361.”

Session

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

6

“The Problem-Based Learning methodology is quite
effective and I believe it goes a long way towards
assisting the learning and retention of concepts and
skills. While the work was a little overbearing in
regard to my other classes, a slight reduction in this
would make the course ideal.”

“The area of the instructor’s performance that I liked
best was when he would sit down with a group of
individuals and have a very helpful discussion about
course topics.”

Quantitatively there are also indications of the benefits
of PBL. Student course evaluations indicate that the PBL
course yielded statistically significant improvements at the
95% confidence level when compared to the studio-based
lecture and class exercise format. To the question “Overall,
how would you rate this course?” the PBL course received
4.19 vs. 3.94 on a quality scale of 0 to 5. To the question
“What is your opinion of the principle textbook of this
course?” PBL was 4.84 vs. 3.88. The textbook [1] used in
this course is generally considered to be an excellent book.
The improved opinions of the textbook are attributed to the
students now actually reading the book. With PBL the
responsibility for understanding the material is clearly
shifted to the student with the textbook as the primary
reference. A student cannot survive in a PBL course without
reading the textbook. Other evaluation questions showed
improvement trends though were not statistically significant.

An analysis of grades to determine if the PBL format
has improved student performance is difficult because the
grading components are very different in the two class
formats taught by this instructor. The final exams were a
similar format that can be compared. The average grade on
the final for the PBL course showed an improvement trend
(88.4 vs. 82.1). This result however was not statistically
significant at the 95% confidence level (p <= 0.06).

CONCLUSIONS

The first course in RIT’s software engineering program that
is devoted to software design has evolved from a traditional
delivery of lecture and lab to its current format. Through
this evolution each version maintained the same learning
outcomes. The students rate the current format using a
problem-based learning methodology favorably compared to
the delivery of other courses in a traditional lecture/lab
format. The students report an increased appreciation for the
material in the textbook even compared to an intermediate
delivery format of lecture immediately followed by exercises
in a studio lab. Anecdotally, the student unit teams are
engaged with the course’s material on design patterns and
the interactions and discussions with the instructor are more
often at levels further up in the Bloom Taxonomy.

The author has also modified an upper-division elective
course to use PBL delivery with results similar to what are
reported here. Based on successes with the two courses the

department faculty are considering using similar pedagogy
in other courses in the software engineering curriculum. All
software engineering courses are now scheduled in our three
studio classrooms with conversion of our courses to studio
delivery or problem-based learning to follow over the
upcoming years.

ACKNOWLEDGMENT

I would like to acknowledge Mike Lutz as the developer of
the original version of the Engineering of Software
Subsystems course. It was from that solid base that I was
able to attempt these experiments in changing the delivery
format. The students, who were unwitting participants in the
evolution of the delivery methodology for this course,
deserve my acknowledgment also. They had to suffer
through my misjudgments that usually were on the side of
too much work for them to do. Each term I noted their
comments and adjusted how I next delivered the course.

REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns

Elements of Reusable Object-Oriented Software. Reading: Addison-
Wesley, 1995.

[2] M. J. Lutz, "Using Patterns to Teach Software Subsystem Design,"
ASEE/IEEE Frontiers In Education Conference, San Jaun, pp. 21 - 24,
1999.

[3] Distance Learning Resource Network, "Bloom's Taxonomy," U.S.
Department of Education, 2000,
http://www.dlrn.org/library/dl/guide4.html.

[4] Project Catalyst, "How to Engineer Engineering Education," Bucknell
University, 2002,
http://www.departments.bucknell.edu/projectcatalyst/summer2002wor
kshop.htm.

[5] B. Hoyt, M. Hanyak, M. Vigeant, W. Synder, M. Aburdene, et al.,
"Project Catalyst: Promoting Systemic Change in Engineering
Education," ASEE/IEEE Frontiers in Education, Reno, NV, pp. 8 - 12,
2001.

[6] K. M. Edens, "Preparing Problem Solvers for the 21st Century
through Problem-Based Learning," College Teaching, vol. 48, pp. 55-
68, 2000.

[7] H. S. Barrows and T. R. N, Problem-based Learning: An Approach to
Medical Education. New York: Springer, 1980.

[8] J. J. Kellar, W. Hovey, M. Langerman, S. Howard, L. Simonson, et
al., "A Problem Based Learning Approach for Freshman
Engineering," ASEE/IEEE Frontiers In Education Conference, Kansas
City, 2000.

[9] M. C. LaPlaca, W. C. Newstetter, and A. P. Yoganathan, "Problem-
Based Learning in Biomedical Engineering Curricula," ASEE/IEEE
Frontiers In Education Conference, Reno, pp. 16-21, 2001.

