
If You’re Not Modeling, You’re Just Programming:
Modeling throughout an Undergraduate Software

Engineering Program

James Vallino

Department of Software Engineering, Rochester Institute of Technology
Rochester, NY 14623-5608, USA

J.Vallino@se.rit.edu

Modeling is a hallmark of the practice of engineering. Through centuries,
engineers have used models ranging from informal “back of the envelope”
scribbles to formal, verifiable mathematical models. Whether circuit models in
electrical engineering, heat-transfer models in mechanical engineering, or
queuing theory models in industrial engineering, modeling makes it possible to
perform rigorous analysis that is the cornerstone of modern engineering. By
considering software development as fundamentally an engineering endeavor,
RIT’s software engineering program strives to instill a culture of engineering
practice by exposing our students to both formal and informal modeling of
software systems throughout the entire curriculum. This paper describes how
we have placed modeling in most aspects of our curriculum. The paper also
details the specific pedagogy that we use in several courses to teach our
students how to create, analyze and implement models of software systems.

1. Introduction

There has been much discussion of software development as an engineering
profession and what changes are necessary in the undergraduate education of software
professionals for the profession to move forward [1-3]. In 1993, Rochester Institute
of Technology (RIT) began the design of a curriculum leading to the Bachelor of
Science in Software Engineering [4, 5]. We developed our curriculum from the
ground up rather than by adding a small set of software engineering courses to an
established curriculum in computer science or computer engineering. We considered
software development to be primarily an engineering endeavor with modeling as a
core component as it is in the traditional engineering disciplines.

2. The Difficulty of Modeling Software Systems

A hallmark of engineering design is the use of models to explore the consequences of
design decisions. Sometimes these models are physical prototypes or informal
drawings, but the sine qua non of contemporary engineering practice is the use of

2 James Vallino

formal, mathematical models of system structure and behavior. Unfortunately, the
current practice in software engineering is such that rigorous models from which one
could derive significant properties are either too rudimentary or so tedious to use that
it is difficult to justify the incremental benefit in other than the most critical of
systems. This reflects a key distinction between software and traditional engineering:
whereas the latter builds on numerical computation, software is more appropriately
modeled using aspects of discrete mathematics. The models stress relationships
between software components, and numerical computation is the exception.

3. Modeling throughout the Curriculum

We designed our curriculum to provide a focus on the principles and practices for the
engineering of software systems through their entire life cycle. Our answer to the
topical question, “How does modeling integrate into the software engineering
curriculum?” is “It should be emphasized throughout the entire curriculum.” Despite
the difficulties described in the previous section, our curriculum stresses modeling
throughout from more informal models expressed in the UML [6] to those expressed
in mathematically rigorous languages such as Alloy [7] and FSP [8]. This emphasis
on modeling is reflected in two of our ten program outcomes:

1. Model and analyze proposed and existing software systems, especially through the

use of discrete mathematics and statistics.
2. Analyze and design complex software systems using contemporary analysis and

design principles such as cohesion and coupling, abstraction and encapsulation,
design patterns, frameworks and architectural styles.

Students develop their modeling skills starting with basic object-oriented design

and progress through the remainder of the curriculum to higher levels of modeling
abstractions in all areas of software engineering including architecture, requirements,
verification and validation, and formal models. This paper describes how we
incorporated modeling into most of the courses in our curriculum. Figure 1 shows the
sequencing of courses this paper discusses. Except for the three courses within the
box labeled “Design Electives” these are all required courses in our program. These
software engineering courses are from the “design side” of our program. There are
also required and elective courses on a “process side.”

This paper first describes how we introduce our students to abstraction through
modeling and move them from a programming view of software development to an
engineering view. Next is a description of our use of mathematically formal models
where our overall goals are three-fold: to acquaint our students with modern modeling
tools, to connect the courses they take in discrete mathematics to real applications,
and to persuade them that mathematics has much to offer to the engineering of quality
software. In the context of these formal models we introduce our students to model-
driven development. The paper concludes with a description of problems still to be
solved and indications of success of modeling in a software engineering curriculum.

If You’re Not Modeling, You’re Just Programming: Modeling throughout an Undergraduate

Software Engineering Program 3

3.1 Basic Object-Oriented Modeling

The students in our program spend their first year studying the fundamentals of
object-oriented programming. Three courses cover topics in basic programming,
object-oriented technology, data structures, and algorithms with simple complexity
analysis. Students are exposed to class diagrams in UML notation beginning in the
middle of the first course. Modeling discussions stay at rather low levels, considering
questions, such as, which nouns might represent objects in the system or state within
the objects and which verbs are behaviors in an object. The design activity is mostly
concerned with the design of single classes and interactions between pairs of classes.

Students in the three computing disciplines take an introduction to software
engineering[9] during their second year. This is the first course taught by the
Department of Software Engineering faculty. The main component of this course is a
term-long team-based project using teams of 4 or 5 students. This course covers
topics such as roles on a software development team, software development
lifecycles, requirements specification, design principles, and user interface design.
Each team develops a product from requirements through product iteration deliveries.
For the first time, students are confronted with subtleties in the UML such as the
distinctions between associations, aggregations and compositions. Teams must
document their designs using UML class diagrams, sequence diagrams and

Fig. 1. Modeling in RIT’s Software Engineering Design Courses

Design Electives

CS Object-Oriented
Programming

Introduction to
Software Engineering

Formal MethodsEngineering of
SW Subsystems

Design of
Info Systems

Software

Architecture

Distributed
SW Systems

Modeling of
R-T Systems

Senior
Proj. I/II

Discrete
Math I/II

Concurrent

SW Systems

CS Theory

Software
Reqs & Specs

4 James Vallino

statecharts. As they develop a larger system in this course, our students first begin to
appreciate the importance of design modeling.

3.2 Modeling in a Course on Design Patterns

The next course, Engineering of Software Subsystems, covers most of the patterns in
[10] using a problem-based learning (PBL) pedagogy. Instructors lecture for no more
than 6 hours throughout the entire course. The traditional lecture time is replaced
with active learning by the students doing class exercises and holding team meetings
to discuss the project work which emphasizes modeling software systems using the
patterns. The two team projects involve the design of a software system in the 2 to 3
kSLOC range. The team models its solution in the UML using class diagrams,
sequence diagrams and statecharts. Discussions with the instructor center on the
tradeoffs in various design approaches and the appropriateness of design pattern
usage.

The first and the last assignments in the Engineering of Software Subsystems
course particularly highlight the emphasis placed on modeling of designs. Students
are confronted with a modeling challenge in the first class when they are given a
design problem to solve using the modeling skills that they have developed through
three quarters of computer science programming courses and one software
engineering course. At the beginning of the second class each student will
individually submit a first cut at a UML class model for the problem. The second
class is divided into three parts. First, groups of three or four students will work
together to create a consensus model incorporating the best aspects of the individual
models. Next, teams present their models to the entire class. Finally, the instructor
leads a discussion on ways in which groups of classes in these models relate to each
other and to the solution of the problem pointing out where established patterns were
used and the advantage of discussing the design at this subsystem level.

The last assignment challenges the students’ modeling abilities in new ways.
Each unit team is given the final code and documentation for a student project
submitted for our introductory software engineering course. The first task is to
reverse engineer the code to obtain a UML class model for the system and identify
any, most likely inadvertent, design pattern usage. The team must capture dynamic
models for the program by creating sequence diagrams for two significant program
features. After gaining an understanding of the as-built system model each team will
propose and implement a refactoring of the code base by following the principles that
the course stresses and applying their newly gained knowledge of design patterns.

In design presentations throughout the course, teams must discuss how their
modeling activities have considered design principles, such as, encapsulation,
coupling, cohesion, and separation of concerns. As mentioned earlier, a cornerstone
of modern engineering practice is the use of quantitative models to do early design
analysis. In our assignments, we require students to manually compute some simple
metrics, such as, class size and average class coupling from their design models. As
part of the initial reverse engineering in the refactoring assignment, the teams use the
Eclipse Metrics plug-in[11] to compute program metrics. Teams use this information

If You’re Not Modeling, You’re Just Programming: Modeling throughout an Undergraduate

Software Engineering Program 5

to guide their refactoring efforts and work to improve on the project’s metrics with
their refactored implementation.

We have evidence that this approach to building modeling skills works. A
quantitative comparison with a non-PBL version of the course matches the research
on problem-based learning[12]. There is a statistically significant improvement in
student satisfaction with and perceived learning from the course. The students also
have a greater appreciation for the course textbook which they now must actually read
because of the minimal lecture pedagogy used.

4. Formal Modeling

While the models discussed to this point have semantic definitions there is often
disagreement between practitioners in their understanding of those semantics
particularly when dealing with UML constructs. Disagreements, such as these, rarely
exist when the models have a formal mathematical definition. The modeling is
capturing logical interconnections and relationships between components using
discrete mathematics rather than numerical attributes using continuous mathematics.
The software engineering design models are difficult to analyze because of the
complexity of the systems being designed and built. Despite these shortcomings, we
believe it is important for our students to see that mathematical formalisms indeed
undergird software design and provide benefits for engineering quality software.

4.1 “Theoretical” vs. “Practical” Modeling

We believe that the science of formal modeling is in the domain of the computer
science and the engineering application of formal modeling is in the software
engineering domain. Our approach begins with our students taking two courses in
discrete mathematics followed by a computer science theory course, which includes
the topics of languages, finite state machines, pushdown automata, Turing machines,
and basic computability theory. We want the emphasis within software engineering
to be on what we sometimes refer to as “practical” formal models. Our Formal
Methods for Specification and Design course focuses on the development of
mathematical models of software systems, and applying those models to the analysis
of system properties, and to verifying design and implementation decisions. This
course has used formalisms such as Z, VDM, and, most recently, Alloy[13] to capture
system behavioral requirements, and uses simulation, and proof to analyze system
properties. The assignments and projects are almost exclusively modeling and model
checking exercises.

4.2 Finite State Process Modeling of Concurrent Systems

For a modeling methodology to be useful for the design of concurrent systems it
should meet two criteria. First, the formalisms should be at a level that reduces the

6 James Vallino

scale and complexity of the system sufficiently to allow the software engineer to
analyze its important concurrent properties such as deadlock and progress checks.
Second, there should be tool support available so that the analysis is done
mechanically rather than by hand. The Finite State Process (FSP) modeling technique
described by Magee and Kramer[8] satisfies both of these criteria and is the
methodology emphasized in our Principles of Concurrent Software Systems[14].
Individual sequential FSP models use standard finite state machine semantics
(mutually exclusive states, instantaneous execution of actions causing transitions) that
our students easily grasp. Students do not have difficulty modeling non-concurrent
FSPs. Modeling of concurrent systems is accomplished by composing multiple
sequential FSPs into a single parallel composition. This is where students often
struggle getting synchronization aspects of the model correct.

A tool called the Labeled Transition System Analyzer (LTSA) allows students to
edit and analyze their FSP models. A major advantage of the LTSA is that with just a
few hours of studio classroom time, students can do productive work within the
LTSA environment. Model checking features provide analysis of deadlock, safety
violations and progress failures.

Having mathematically proven that the model does not contain any anomalous
behaviors, the intention is to keep the implementation as closely tied to the model as
possible. To complete this model-driven development, it would be optimal to
generate an implementation of the model via autocoding. The LTSA does not have an
autocoding feature requiring students to do manual implementations. Students think
about mappings from model elements to implementations. This yields a mechanical
conversion to generate the code for the concurrency framework captured in the model.

When we initially taught this course, we did not explicitly cover the formal FSP
semantics. We assumed that the students would recognize the application of discrete
mathematics in the finite state machines that are the basis of the FSP semantics. We
were quite surprised, then, when over 75% of the students answered “Not applicable”
to the question, “How much did this course require you to demonstrate an ability to
model and analyze proposed and existing software systems, especially through the use
of discrete mathematics and statistics?” We added discussion of the formal semantics
for each FSP feature. Students now recognize that while they may not be “doing
discrete math” they are applying it in the design and analysis of concurrent systems.

Each of the projects we assign requires the team to use a model-driven
development approach. One problem with FSP modeling is state-space explosion.
The larger projects that we assign in this course will commonly have millions of
states in the composite. While LTSA can handle systems of this size, a naïve
approach to modeling will exceed the capacity of the tool. This aids student learning,
in that it forces them to model the system at a level of abstraction that captures all the
essential concurrency issues while fitting within the capacity of the LTSA.

4.3 Model-Driven Development

One course in our curriculum has model-driven development at its core. This elective
course, Modeling of Real-Time Systems, is in our multi-disciplinary real-time and
embedded systems course sequence[15]. The requirements and architectural design

If You’re Not Modeling, You’re Just Programming: Modeling throughout an Undergraduate

Software Engineering Program 7

project has the team create a requirements specification for a small consumer device.
The team does a UML use case analysis of the product followed by an architectural
design and high-level class structural design. In the second project, the instructor
provides a statement of requirements and the team models the behavioral
requirements in a UML statechart, creates a class-level design and set of sequence
diagrams, and implements the complete system. The third project is a complete
model-driven development using statecharts for behavioral modeling of real-time and
embedded systems. The students explore the code generation features of the Ilogix
Rhapsody modeling tool they have been using throughout the course. The teams
create a statechart-based definition of the system behavior and automatically generate
C++ code for the application. A final individual project requires students to model a
system, such as an auto power window controller, and reverse vending machine, with
an identification of actors, a UML use case analysis, class structural design, and
system dynamic modeling using sequence diagrams and statecharts.

5. Modeling in Other Design Areas

The previous sections described how our Engineering of Software Subsystems course
sets the foundation for our students’ use of design modeling and abstraction, and the
way we present formal modeling to our students. This section describes how design-
oriented courses throughout the rest of our program reinforce the software engineer’s
reliance on modeling and abstraction.

In the Principles of Distributed Software Systems course students work with the
Concurrent Object Modeling and Architectural Design Method. This method follows
the traditional UML approach, with a heavier emphasis placed on interaction models
and communication diagrams.

Entity-Relationship-Diagrams, considered by some to have been a precursor to
object-oriented class models, are the models that students develop and analyze in
Principles of Information Systems Design. The course also requires teams to use
J2EE Blueprints and enterprise-level patterns as abstractions in their information
system designs.

In the Software Requirements and Specifications course our students see modeling
techniques for expressing software requirements. Students model system
requirements using UML activity diagrams and by applying analysis-level patterns.
The course also exposes the students to Data Flow Diagrams and Nasi-Scheiderman
diagrams as legacy modeling techniques that they may need to understand if they are
required to work on older systems that had originally used those two methodologies.

In the Software Architecture course, students are challenged with understanding
and developing models of software systems at the highest levels of abstraction. They
must model the system from multiple architectural perspectives[16]. Views include,
for example, structural, process, deployment, and concurrency. Systems are also
assessed based on quality attributes in the areas of availability, modifiability,
performance, security, testability, and usability. We also teach this course in a
problem-based format. Assignments include preparing one-page executive summary
memos that describe the effect a new technology will have on a product, and to

8 James Vallino

advocate for a product line approach for a new development project. Case studies
provide prominent examples of architectural analyses in the course. Teams select an
open-source or well publicized architectural framework and perform their own
architectural analysis of it.

6. Problems Still to Solve

This paper has discussed our approach to infuse software systems modeling
throughout an undergraduate software engineering curriculum. This section will
describe some of the problem areas that still remain.

6.1 Using a Consistent Subset of UML

We are not satisfied that we have chosen the right aspects of the UML to cover in
each of our courses. We need additional emphasize on the semantics for basic UML
class relationships. In several of our design-oriented courses we give a short UML
quiz early in the term. There are many students who continue to have difficulty
distinguishing the semantic differences between association, aggregation and
composition.

We originally used use case analysis of requirements in our introductory course.
The analyses that teams submitted were so poor that we questioned whether there was
any educational benefit. In this case, we opted for an agile approach and switched to
user stories to specify requirements. We felt that this was adequate for this
introduction to software engineering, which is taken by students in computer science,
computer engineering and software engineering, as long as the SE students saw full
use case analysis in our Software Requirements and Specifications course.

6.2 Getting Students to Trust Their Models

Our students are comfortable with model-driven development when the models are
class-based models. They still grapple with other abstraction models such as the
concurrency models seen in Principles of Concurrent Software Systems. Students do
not trust their FSP model and their ability to use the model to create a working
implementation. We have observed, however, that the emphasis on modeling gives
students an improved understanding of the system requirements and the thread
synchronization points, which is a benefit even if they abandon the model during
implementation.

7. Success of Modeling throughout the Curriculum

RIT’s traditional focus on career-oriented education means that almost all of our
students enter the workforce upon graduation and their employers are a major

If You’re Not Modeling, You’re Just Programming: Modeling throughout an Undergraduate

Software Engineering Program 9

stakeholder in the outcomes of the program. Discussions with campus recruiters and
members of our Industrial Advisory Board have indicated an existing emphasis on or
a strong move toward modeling using the UML. While we would not attribute the
success of our students in their employment only to our program’s emphasis on
modeling, we do believe, however, that it is a prime factor that attracts employers to
our students.

7.1 Preference for a Modeling-first Approach

A review of co-op employment evaluations provides anecdotal evidence of the value
of our students’ training to their employers. An engineering manager in an aerospace
company, which has hired many of our students on co-op and in full-time positions,
commented that the students have a strong focus on capturing requirements and
system modeling. An engineering vice-president, who has hired several of our
students and sponsored senior projects, commented that our graduates match up
favorable against some software engineers who have been working for him for five
years. A non-SE RIT faculty member, who manages interns for a health insurance
provider, noted a significant difference in how software engineering students learn
about a system. The SE students ask questions about components, architecture, and
interactions between the components, preferring a higher-level and more abstract
model-driven discussion. The computer science and information technology students
tend to quickly ask for examples of working code and begin understanding the system
from the bottom up. The SE students overwhelmingly believe they formed the base
for this methodology in Engineering of Software Subsystems when they were forced
to think abstractly about their projects using design patterns rather than code
implementations.

7.2 Analysis of Formal Models

Even though the LTSA tool used in our concurrent systems course is not “industrial
strength”, one student used it on a co-op assignment. The student sensed that there
was a problem in a protocol that he was asked to implement. The student
remembered the features provided by LTSA; with an afternoon of effort he modeled
the protocol, executed traces, and uncovered a progress failure that prevented the
protocol from continuing to completion under certain circumstances. The model
highlighted the exact problem that was latent in the system thus eliminating many
hours of debugging and finger pointing between the hardware and software engineers.

8. Conclusions

The RIT undergraduate program in software engineering instills an engineering
mindset in students. Our program exposes our students to both the informal
modeling, which is more prevalent in software engineering practice, and formal

10 James Vallino

modeling, which has benefits derived from its underlying mathematical rigor.
Without the constraints of traditional computer science or computer engineering
programs, we designed a curriculum in which modeling applied to software
development is prominent throughout the curriculum. We believe that this emphasis
on modeling is a distinguishing characteristic between the science and engineering of
software development. As research in model-driven development progresses, we will
adapt our curriculum to ensure that our students graduate with an ability to model
complex software systems using state-of-the-art practices and abstractions.

9. References

[1] M. Shaw, "Prospects for an Engineering Discipline of Software." IEEE Software, v7, n6,
Nov/Dec 1990, pp.15-24

[2] D. L. Parnas, "Software Engineering Programs Are Not Computer Science Programs." IEEE
Software, Nov/Dec 1999, pp 19-30

[3] T. B. Hilburn, “Software engineering education: a modest proposal.” IEEE Software, v14,
n6, Nov/Dec. 1997, pp 44 – 48

[4] J. F. Naveda and M. J. Lutz, “Crafting a baccalaureate program in software engineering.”
Proceedings of the Conference on Software Engineering Education & Training, April 1997,.

[5] Department of Software Engineering, Rochester Institute of Technology,
http://www.se.rit.edu.

[6] M. Blaha and J. Rumbaugh Object-Oriented Modeling and Design with UML (Second
Edition). Prentice-Hall, 2005.

[7] D. Jackson “Alloy: A Lightweight Object Modeling Notation.” ACM Transactions on
Software Engineering and Methodology (TOSEM) v11, n2, April 2002, pp. 256-290

[8] J. Magee and J. Kramer Concurrency: State Models and Java Programs. John Wiley &
Sons, 1999.

[9] Ludi, S., Reichlmayr, T., and Natarajan, S. “An Introductory Software Engineering Course
That Facilitates Active Learning,” Proceedings of ACM SIGCSE Conference, St.Louis, MO.
February, 2005.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns Elements of Reusable
Object-Oriented Software. Reading: Addison-Wesley, 1995.

[11] Eclipse Metrics Plug-in, http://metrics.sourceforge.net/.
[12] J. Vallino “Design Patterns: Evolving from Passive to Active Learning.” Proceedings of

the Frontiers in Education Conference. Boulder, CO. November 2003.
[13] M. Lutz “Exploratory Mathematics: Experiences With Alloy In Undergraduate Formal

Methods,” Proceedings of 2006 American Society of Engineering Education Conference,
Chicago, IL. June 2006.

[14] M. Lutz and J. Vallino “Concurrent System Design: Applied Mathematics & Modeling in
Software Engineering Education,” Proceedings of 2005 American Society of Engineering
Education Conference, Portland, OR. June 2005.

[15] J. Vallino and R. Czernikowski “Thinking Inside the Box: A Multi-Disciplinary Real-
Time and Embedded Systems Course Sequence,” Proceedings of Frontiers in Education
Conference. Indianapolis, IN. October 2005.

[16] L. Bass, P. Clements, and R. Kazman Software Architecture In Practice. Addison-Wesley,
2003.

