
If You’re Not Modeling, You’re Just Programming:
Modeling throughout an Undergraduate Software

Engineering Program

James Vallino

Department of Software Engineering, Rochester Institute of Technology
Rochester, NY 14623-5608, USA

J.Vallino@se.rit.edu

Modeling is a hallmark of the practice of engineering. Through centuries,
engineers have used models ranging from informal “back of the envelope”
scribbles to formal, verifiable mathematical models. Whether circuit models in
electrical engineering, heat-transfer models in mechanical engineering, or
queuing theory models in industrial engineering, modeling makes it possible to
perform rigorous analysis that is the cornerstone of modern engineering. By
considering software development as fundamentally an engineering endeavor,
RIT’s software engineering program strives to instill a culture of engineering
practice by exposing our students to both formal and informal modeling of
software systems throughout the entire curriculum. This paper describes how
we have placed modeling in most aspects of our curriculum. The paper also
details the specific pedagogy that we use in several courses to teach our
students how to create, analyze and implement models of software systems.

1. Introduction

There has been much discussion of software development as an engineering
profession and what changes are necessary in the undergraduate education of software
professionals for the profession to move forward [1-5]. In 1993, Rochester Institute
of Technology (RIT) began the design of a curriculum leading to the Bachelor of
Science in Software Engineering [6, 7]. We held the strong belief that the software
engineering body of knowledge had matured and grown sufficiently distinct from
other computing disciplines that a new curriculum was indeed needed. We developed
our curriculum from the ground up rather than adding a small set of software
engineering courses to an established curriculum in computer science or computer
engineering. The curriculum was designed to meet the software engineering program
criteria specified by the Engineering Accreditation Commission of ABET [8], the
private governing agency responsible for accreditation of engineering, technology and
computing programs in the US. In 2001, our first class graduated from the program
with the first degrees granted by an accredited software engineering baccalaureate
program in the United States.

2 James Vallino

2. The Difficulty of Modeling Software Systems

A hallmark of engineering design is the use of models to explore the consequences of
design decisions. Sometimes these models are physical prototypes or informal
drawings, but the sine qua non of contemporary engineering practice is the use of
formal, mathematical models of system structure and behavior. These different types
of models serve differing purposes. Consider an architect’s mockup of a building
compared to a structural engineer’s finite element model of the structural support
system. The former serves an artistic purpose primarily while the later is serving an
engineering purpose. A cornerstone of modern engineering practice is performing a
rigorous analysis on the engineering models. Unfortunately, the current practice in
software engineering is such that rigorous models from which one could derive
significant properties are either too rudimentary or so tedious to use that it is difficult
to justify the incremental benefit in other than the most critical of systems. This is
partially due to the relative immaturity of software engineering, but it also reflects a
key distinction between software and traditional engineering: whereas the latter builds
on numerical computation and continuous functions, software is more appropriately
modeled using logic, set theory, and other aspects of discrete mathematics. Most of
the models stress relationships between software components, and numerical
computation is the exception rather than the norm.

3. Modeling throughout the Curriculum

We designed our curriculum to provide a focus on the principles and practices for the
engineering of software systems through their entire life cycle. Our answer to the
topical question, “How does modeling integrate into the software engineering
curriculum?” is “It should be emphasized throughout the entire curriculum.” Despite
the difficulties described in the previous section, our curriculum stresses modeling
throughout from more informal models expressed in the UML [9] to those expressed
in mathematically rigorous languages such as Alloy [10] and FSP [11]. This
emphasis on modeling is reflected in two of our ten program outcomes:

1. Model and analyze proposed and existing software systems, especially through the

use of discrete mathematics and statistics.
2. Analyze and design complex software systems using contemporary analysis and

design principles such as cohesion and coupling, abstraction and encapsulation,
design patterns, frameworks and architectural styles.

Students develop their modeling skills starting with basic object-oriented design

and progress through the remainder of the curriculum to higher levels of modeling
abstractions in all areas of software engineering including architecture, requirements,
verification and validation, and formal models. This paper describes how we
incorporated modeling into most of the courses in our curriculum. A flowchart for
our curriculum is at [12]. Figure 1 shows the sequencing of courses this paper
discusses. Each course runs for ten weeks, meeting four hours per week. Except for

If You’re Not Modeling, You’re Just Programming: Modeling throughout an Undergraduate
Software Engineering Program 3

the three courses within the box labeled “Design Electives” these are all required
courses in our program. They are taught by faculty in Software Engineering except
for the CS and Math courses shown. These software engineering courses are from the
“design side” of our program. There are also required and elective courses on a
“process side.” Those courses also place an emphasis on modeling though in most
cases they are not working with UML models. The right side of this sequence is
where our students are exposed to formal modeling techniques. These courses have
design course prerequisites to ensure that the formal methods are studied from the
perspective of their use in designing software systems.

This paper first describes how we introduce our students to abstraction through

modeling and move them from a programming view of software development to an
engineering view. Next is a description of our use of mathematically formal models
where our overall goals are three-fold: to acquaint our students with modern modeling
tools, to connect the courses they take in discrete mathematics to real applications,
and to persuade them that mathematics has much to offer to the engineering of quality
software. In the context of these formal models we introduce our students to model-
driven development. The paper concludes with a description of problems still to be
solved and indications of success of modeling in a software engineering curriculum.

Fig. 1. Modeling in RIT’s Software Engineering Design Courses

Design Electives

CS Object-Oriented
Programming

Introduction to
Software Engineering

Formal MethodsEngineering of
SW Subsystems

Design of
Info Systems

Software
Architecture

Distributed
SW Systems

Modeling of
R-T Systems

Senior
Proj. I/II

Discrete
Math I/II

Concurrent
SW Systems

CS Theory

Software
Reqs & Specs

4 James Vallino

3.1 Basic Object-Oriented Modeling

The students in our program spend their first year studying the fundamentals of
object-oriented programming. Three courses cover topics in basic programming,
object-oriented technology, data structures, and algorithms with simple complexity
analysis. The courses are offered by the Department of Computer Science and are
common to the Computer Science, Computer Engineering and Software Engineering
programs. Students are exposed to class diagrams in UML notation beginning in the
middle of the first course. From this sequence of three 10-week courses, we expect
our students to develop solid programming skills. Modeling discussions stay at rather
low levels, considering questions, such as, which nouns might represent objects in the
system or state within the objects and which verbs are behaviors in an object. The
design activity is mostly concerned with the design of single classes and interactions
between pairs of classes. Beyond this there is little discussion of overriding principles
motivating the design activity. This is a programming-first approach with delayed
introduction of objects which has worked better with our students than an objects-first
or design-first approach.

In a traditional pedagogy, which uses a lecture and lab format, students are
typically passive learners. Active engagement of the student is often missing. There
is ample evidence in the engineering education literature[13-15] that actively
engaging the student results in the long-lasting learning that goes beyond what is
needed for the next exam. Over the last several years we have reworked our
curriculum to use active learning techniques with an emphasis on problem-based
learning. All of our courses are taught in studio lab format where we have no
distinction between lecture and lab. The typical classroom session seamlessly weaves
lecture, class exercises, computer-based demonstrations, group work, and student use
of computers. This presents the course material to students in ways that
accommodate a variety of learning styles.

Students in the three computing disciplines take an introduction to software
engineering during their second year. This is the first course taught by the
Department of Software Engineering faculty. The main component of this course is a
term-long team-based project using teams of 4 or 5 students. This course[16] has 20
students per section with one faculty member. Due to program growth, we are
experimenting with 40 students per section covered by one faculty member and one or
two upper-level students. This course covers topics such as roles on a software
development team, software development lifecycles, requirements specification,
design principles, and user interface design. Each team develops a product from
requirements through product iteration deliveries. Class sessions typically are
composed of a short lecture component, class exercises and team meetings. Several
class exercises are modeling exercises. For the first time, students are confronted
with subtleties in the UML such as the distinctions between associations, aggregations
and compositions. Teams must document their designs using UML class diagrams,
sequence diagrams and statecharts. During class reviews teams present their designs
which are then critiqued by the instructor and other teams. In grading, instructors
emphasize the importance of clarity in the design description. As they develop a
larger scale system in this course, our students first begin to appreciate the importance
of design modeling. In reflective comments at the end of the course, students identify

If You’re Not Modeling, You’re Just Programming: Modeling throughout an Undergraduate
Software Engineering Program 5

that their modeling skills are not adequate to handle the design of these systems with a
larger number of classes interacting in new ways. The students are eager to learn
more about modeling larger software systems.

3.2 Modeling in a Course on Design Patterns

The next course, Engineering of Software Subsystems, is nicknamed the “Patterns
Course” since it is based on [17]. The course covers most of the patterns in [17] using
a problem-based learning (PBL) pedagogy. The course is broken into 4 units with
each unit having individual and team learning elements. The emphasis is on
modeling software systems using the patterns selected for the unit. Instructors lecture
for no more than 6 hours throughout the entire course. The traditional lecture time is
replaced with active learning by the students doing class exercises and holding unit
team meetings to discuss the unit project work. Each unit project involves the design
of a software system in the 2 to 3 kSLOC range. The team models its solution in the
UML using class diagrams, sequence diagrams and statecharts. Discussions with the
instructor center on the tradeoffs in various design approaches and the appropriateness
of design pattern usage. The grading of these assignments places more weight on the
sound analysis of the design than on a complete implementation of it. Depending on
the size of the system, teams are often asked to implement only a subsystem of the
overall design.

The first and the last assignments in the Engineering of Software Subsystems
course particularly highlight the emphasis placed on modeling of designs. Students
are confronted with a modeling challenge in the first class when they are given a
design problem to solve using the modeling skills that they have developed through
three quarters of computer science programming courses and one software
engineering course. We ask students to model problems, such as, a general
framework for a two-player board game, a medical picture archive and
communications system (PACS) and a system to allow interoperation with several
chat servers. The students are encouraged to discuss the problem with one or two
other students during the remaining class time in the first course session. At the
beginning of the second class each student will individually submit a first cut at a
UML class model for the problem. Students are assured that they will receive most
credit for the assignment if they exhibit due diligence in completing it. A full and
complete model is not sought. The second class is divided into three parts. First,
groups of three or four students will work together to create a consensus model
incorporating the best aspects of the individual models. Next, some teams present
their models to the entire class. In the last part of this second class, the instructor
leads a discussion of ways in which groups of classes in these models relate to each
other and to the solution of the problem. Especially where there are commonalities,
the instructor will point out where established patterns were used in one or more
models and motivate the advantage of discussing the design at this subsystem level
rather than an individual class level.

The last assignment challenges the students’ modeling abilities in new ways that
are quite relevant to co-op work experiences they will see shortly. Each unit team is
given the final code and documentation for a student project submitted for our

6 James Vallino

introductory software engineering course. This is the team-based project course that
most students in Engineering of Software Subsystems completed within the last term
or two. These projects are typically under 2 kSLOC in size. The project is from one
or two years back so that few students had this as their project and the instructor
absolutely ensures that for those students who had done this project their submission
is not the one selected. All teams work with the same code base. The first task is to
reverse engineer the code to obtain a UML class model for the system and identify
any, most likely inadvertent, design pattern usage. Teams individually choose
whether to do this manually or with tool support. The team will also need to assess
the quality of the documentation that the student team provided to determine if it
provides an accurate guide for recovering the class model. The team also must
capture dynamic models for the program by creating sequence diagrams for two
significant program features. After gaining an understanding of the as-built system
model each team will propose a refactoring of the code base by following the
principles that the course stresses and applying their newly gained knowledge of
design patterns. Each team is required to implement a portion of their refactored
model with design pattern usage the team would like to explore. This emphasizes an
incremental approach that always maintains a fully working system.

In design presentations throughout the course, teams must discuss how their
modeling activities have considered design principles, such as, encapsulation,
coupling, cohesion, and separation of concerns. As mentioned earlier, a cornerstone
of modern engineering practice is the use of quantitative models to do early design
analysis. There are metric models of object-oriented software[18] that quantify the
design principles we stress but, unfortunately, the tools we used so far measure from a
code base and not a model of the system. Access to a code base is too late to have an
effect on early design tradeoffs. In our assignments, we require students to manually
compute some simple metrics, such as, class size and average class coupling from
their design models. The refactoring project does, however, begin with a code base.
As part of the initial reverse engineering, the teams use the Eclipse Metrics plug-
in[19] to compute program metrics on this Java project. Usually, there are a number
of areas in which the original project exceeds some metric targets. Teams use this
information to help guide their refactoring efforts and work to improve on the
project’s metrics with their refactored implementation. Teams have been quite proud
of their efforts that completely eliminated all red flags from the metrics tool suite.

The students are challenged by the modeling work that they do in the Engineering
of Software Subsystems course. The course closes with a fun modeling exercise.
After breaking the class into small groups, five design pattern cards[20] are dealt to
each group. Each card has on its face one design pattern. The task is for the team to
think of a project in which their hand of design patterns could be applied. Teams are
allowed one draw of replacement cards for their hand. At the end of the exercise each
team has two minutes to present to the class their project and its design. The class
votes for the best design patterns use and the winning team is awarded a small prize.

We have evidence that this approach to building modeling skills works[21]. A
quantitative comparison with a non-PBL version of the course matches the research
on problem-based learning[13]. There is a statistically significant improvement in
student satisfaction with and perceived learning from the course. The students also

If You’re Not Modeling, You’re Just Programming: Modeling throughout an Undergraduate
Software Engineering Program 7

have a greater appreciation for the course textbook which they now must actually read
because of the minimal lecture pedagogy used.

4. Formal Modeling

While the models discussed to this point have semantic definitions there is often
disagreement between practitioners in their understanding of those semantics
particularly when dealing with UML constructs. Disagreements, such as these, rarely
exist when the models have a formal mathematical definition. This paper has already
noted issues with formal mathematical models in software engineering. Compared to
models used by traditional engineering disciplines, software modeling is difficult to
grasp because it does not have an inherent connection to a physical entity. The
modeling is capturing logical interconnections and relationships between components
using discrete mathematics rather than numerical attributes using continuous
mathematics. The software engineering design models are difficult to analyze
because of the complexity of the systems being designed and built. Despite these
shortcomings, we believe it is important for our students to see that mathematical
formalisms indeed undergird software design and have something to offer to the
engineering of quality software.

4.1 “Theoretical” vs. “Practical” Modeling

Our approach begins with our students taking two courses in discrete mathematics.
The initial curriculum then followed with a single course, Formal Methods for
Specification and Design. Several years into the program, we realized that this course
was too broad, covering what might be termed both the science and engineering of
formal modeling. We felt that the science was in the domain of the computer
scientists and that the engineering application of formal modeling was in the software
engineering domain. We wanted the emphasis within software engineering to be on
what we sometimes refer to as “practical” formal models. To reflect this viewpoint,
we added a requirement for students to take a standard introductory course in
computer science theory, which includes the topics of languages, finite state
machines, pushdown automata, Turing machines, and basic computability theory.
The Formal Methods course builds on this improved knowledge base by focusing on
the development of mathematical models of software systems, and applying those
models to the analysis of system properties, and to verifying design and
implementation decisions. This course has used formalisms such as Z, VDM, and,
most recently, Alloy[22] to capture system behavioral requirements, and uses
simulation, and proof to analyze system properties. The assignments and projects are
almost exclusively modeling and model checking exercises.

8 James Vallino

4.2 Finite State Process Modeling of Concurrent Systems

When we did an assessment after adding the theory of computing course we felt that
our students were still not making a strong enough connection between their formal
models and the resulting implementations. To highlight this connection, and the
potential of model-driven development, we made an existing elective course[23],
Principles of Concurrent Software Systems, a program requirement.

For a modeling methodology to be useful for the design of concurrent systems it
should meet two criteria. First, the formalisms should be at a level that reduces the
scale and complexity of the system sufficiently to allow the software engineer to
analyze its important concurrent properties such as deadlock and progress checks.
Second, there should be tool support available so that the analysis is done
mechanically rather than by hand. The Finite State Process (FSP) modeling technique
described by Magee and Kramer[11] satisfies both of these criteria. Based on finite
state machines, the basics of FSP modeling has been seen by the students before and
is easy to grasp. Individual sequential FSP models use standard finite state machine
semantics (mutually exclusive states, instantaneous execution of actions causing
transitions) that are defined using a text notation. Students do not have difficulty
modeling non-concurrent FSP’s. Modeling of concurrent systems is accomplished by
composing multiple sequential FSP’s into a single parallel composition. This is
where students often struggle getting synchronization aspects of the model correct.

A tool called the Labeled Transition System Analyzer (LTSA) allows students to
edit and analyze their FSP models. A major advantage of the LTSA compared to
“industrial-strength” tools is that students can quickly learn LTSA; with just a few
hours of studio classroom time, students know how to work within the LTSA
environment. Features provided by LTSA allow the student to experiment with their
models. A trace tool lets the student manually execute the model by triggering
actions and watching how the system reacts. By running a simulation and studying
the actions available at each state the student can determine if the synchronization
within the model is working correctly. The model checking features allow for
analysis of deadlock conditions, safety violations and progress failures. For safety
issues, the student defines a correct sequence for actions to be executed by the
composite process. The model checker determines if there is any trace of execution
within the composite FSP that would violate this sequence. Progress checks
determine if there are regions of the composite FSP in which actions that must be
executed can never be triggered. By analyzing the model the student gains a better
understanding of the concurrency and synchronization requirements for the system.

Having mathematically proven that the model does not contain any anomalous
behaviors, the intention is to keep the implementation as closely tied to the model as
possible. To complete this model-driven development, it would be optimal to
generate an implementation of the model via autocoding. The LTSA does not provide
that feature and students will manually do the implementation. Students think about
mappings from model elements to implementations during in-class discussions and
while answering unit questions. They must consider trade-offs between an exact
implementation of the FSP formal semantics and implementation efficiencies. This
can yield a somewhat mechanical conversion to generate the code for the concurrency
framework captured in the model.

If You’re Not Modeling, You’re Just Programming: Modeling throughout an Undergraduate
Software Engineering Program 9

When we initially taught this course, we did not explicitly cover the formal FSP
semantics. We assumed that the students would recognize the application of discrete
mathematics in the finite state machines that are the basis of the FSP semantics. We
were quite surprised, then, when over 75% of the students answered “Not applicable”
to the question, “How much did this course require you to demonstrate an ability to
model and analyze proposed and existing software systems, especially through the use
of discrete mathematics and statistics?” We have since changed the syllabus for the
course to explicitly discuss the formal semantics for each FSP feature when it is
presented. Students now recognize that while they may not be “doing discrete math”
they are applying it in the design and analysis of these concurrent systems.

Each of the projects we assign requires the team to use a model-driven
development approach. One problem with FSP modeling is state-space explosion.
The composite FSP has exponential growth for the number of states in the system.
The larger projects that we assign in this course will commonly have millions of
states in the composite. While LTSA can handle systems of this size, a naïve
approach to modeling will exceed the capacity of the tool. This actually aids student
learning, in that it forces them to model the system at a level of abstraction that
captures all the essential concurrency issues while at the same time fits within the
capacity of the LTSA.

We teach Principles of Concurrent Software Systems using a problem-based
learning pedagogy. There is a minimal amount of traditional lecturing to cover the
semantics of FSP features. Class time is spent doing instructor or student-led
modeling exercises. The instructor will also discuss the current unit questions and
project with each team. The day before each class, any student can make a request on
a course bulletin board for the instructor to discuss a particular topic during the next
class session. Students like PBL because they are given some control over class
content. Individual students or teams can request what they think will best aid their
learning: lectures, instructor-led exercises, or instructor discussion with the team.

4.3 Model-Driven Development

One course in our curriculum has model-driven development at its core. This elective
course, Modeling of Real-Time Systems, is in our multi-disciplinary real-time and
embedded systems course sequence[24]. The course follows the treatment of UML
modeling of real-time systems given in [25]. Course projects are completed in
pairs—a software engineering student teamed with a computer engineering student.

The requirements and architectural design project has the team create a
requirements specification for a consumer device, such as, a pedometer step counter
or a home blood pressure monitor, based on the user manual for the device. The team
does a UML use case analysis of the product followed by an architectural design and
high-level class structural design. In the second project, the instructor provides a
clear statement of the system requirements and requires the team to model the
behavioral requirements in a UML statechart, create a class-level design and set of
sequence diagrams, and implement the complete system. The third project is a
complete model-driven development emphasizing statecharts as a mechanism for
behavioral modeling of real-time and embedded systems. In this project the students

10 James Vallino

explore the code generation features of the Ilogix Rhapsody modeling tool they have
been using throughout the course. The teams create a statechart-based definition of
the system behavior and automatically generate C++ code for the application.
Typically, the team will be able to create a fully-functioning application entirely from
within the statechart model. For this project we have used a four-function calculator
and garage door opener controller as systems to implement. A final individual project
requires students to model a system, such as an auto power window controller, and
reverse vending machine, with an identification of actors, a UML use case analysis,
class structural design, and system dynamic modeling using sequence diagrams and
statecharts.

5. Modeling in Other Design Areas

The previous sections described how our Engineering of Software Subsystems course
sets the foundation for our students’ use of design modeling and abstraction, and the
way we present formal modeling to our students. This section describes how design-
oriented courses throughout the rest of our program reinforce the software engineer’s
reliance on modeling and abstraction.

5.1 Modeling of Distributed Systems

In the Principles of Distributed Software Systems course students work with the
Concurrent Object Modeling and Architectural Design Method. This method follows
the traditional UML approach, with a heavier emphasis placed on interaction models
and communication diagrams. Subsystems for distributed applications often rely on
message passing protocols where the communication diagram models prove
particularly valuable.

5.2 Modeling in Information Systems Design

Entity-Relationship-Diagrams, considered by some to have been a precursor to object-
oriented class models, are the models that students develop and analyze in Principles
of Information Systems Design. The course also requires teams to use J2EE
Blueprints and enterprise-level patterns as abstractions in their information system
designs.

5.3 Requirements Modeling

All students in our program are required to work in a team on a two-quarter senior
capstone project. Two upper-division courses serve as required prerequisites for
taking the senior project courses. In the Software Requirements and Specifications
course our students see modeling techniques for expressing software requirements.
Students model system requirements using UML activity diagrams and by applying

If You’re Not Modeling, You’re Just Programming: Modeling throughout an Undergraduate
Software Engineering Program 11

analysis-level patterns. The course also exposes the students to Data Flow Diagrams
and Nasi-Scheiderman diagrams as legacy modeling techniques that they may need to
understand if they are required to work on older systems that had originally used
those two methodologies.

5.4 Modeling of Software Architectures

Software Architecture is also a prerequisite for senior project. In this course, students
are challenged with understanding and developing models of software systems at the
highest levels of abstraction. They must model the system from multiple architectural
perspectives[26]. Views include, for example, structural, process, deployment, and
concurrency. Systems are also assessed based on quality attributes in the areas of
availability, modifiability, performance, security, testability, and usability. We also
teach this course in a problem-based format. Assignments include preparing one-
page executive summary memos that describe the effect a new technology will have
on a product, and to advocate for a product line approach for a new development
project. Case studies provide prominent examples of architectural analyses in the
course. Teams select an open-source or well publicized architectural framework and
perform their own architectural analysis of it. The written documentation and class
presentations must include multiple architectural views. Similar to early choices
made on development projects in industry, the short timeframe for the assignment
requires teams mostly rely on what they can gather from documentation rather than
in-depth work with the framework. Their analyses often make comments on the
quality of the documentation itself.

Students have struggled with the level of abstraction required in the Software
Architecture course. We originally had this course positioned as the third course in
our program typically taken early in the third year. Students did not possess
sufficiently developed modeling and analysis skills to handle the high level of
abstraction. We have since moved software architecture to late in our program. With
its new position in the curriculum, the software architecture course appropriately acts
as the culminating required course for the design-oriented aspect of our curriculum.

6. Problems Still to Solve

This paper has discussed our approach to infuse software systems modeling
throughout an undergraduate software engineering curriculum. It has shown some of
the places where we learned from what we did and made corrections. This section
will describe some of the problem areas that still remain.

6.1 Using a Consistent Subset of UML

We are not satisfied that we have chosen the right aspects of the UML to cover in
each of our courses. We need additional emphasize on the semantics for basic UML

12 James Vallino

class relationships. In several of our design-oriented courses we give a short UML
quiz early in the term. There are many students who continue to have difficulty
distinguishing the semantic differences between association, aggregation and
composition. Since it is not uncommon for practicing software engineers to have
differing interpretations of these relationships these students unfortunately will be in
good company. Fortunately, our faculty have agreed on semantics for the common
UML elements we use in coursework, particularly the multi-section introductory
courses.

We originally used use case analysis of requirements in our introductory course.
The analyses that teams submitted were so poor that we questioned whether there was
any educational benefit. To adequately cover use case analysis would take too much
time in that particular course. In this case, we opted for an agile approach and
switched to user stories to specify requirements. We felt that this was adequate for
this introduction to software engineering, which is taken by students in computer
science, computer engineering and software engineering, as long as the SE students
saw full use case analysis in our Software Requirements and Specifications course.

6.2 Appropriate Tool Support for Modeling

It is important to provide tools to assist students with developing their models and
performing analyses where that is possible. We have available both Rational Rose
and the popular UML editing tools that work within Eclipse. We have chosen not to
spend class time on helping students become proficient with these tools. Students are
made aware of the tool availability and they often choose based on the learning curve.

Recently, we have learned of tools that provide model-based metric analysis in
addition to code-based analysis[27]. Incorporating these into our design courses,
particularly Engineering of Software Subsystems, will allow spreadsheet-like what-if
analyses at modeling time and eliminate current manual calculations.

6.3 Getting Students to Trust Their Models

Our students are comfortable with model-driven development when the models are
class-based models. They still grapple with other abstraction models such as the
concurrency models seen in Principles of Concurrent Software Systems. Students
created a model but did not use it to directly drive the implementation. Students do
not trust that the FSP model represents a correctly functioning system. They do not
trust their ability to use the model to create a working implementation. We have
observed, however, that the emphasis on modeling gives students an improved
understanding of the system requirements and the thread synchronization points,
which is a benefit even if they abandon the model during implementation. The
students who take the elective Modeling of Real-Time Systems course are very
excited about model-driven development when they can get an autocoded
implementation of their statechart model simply by selecting a menu option. We
believe that we will need to wait for further development of model-driven
development methodologies and tools before we incorporate it into required courses.

If You’re Not Modeling, You’re Just Programming: Modeling throughout an Undergraduate
Software Engineering Program 13

7. Success of Modeling throughout the Curriculum

We designed the Software Engineering program with RIT’s traditional focus on
career-oriented education in mind. Since almost all of our students enter the
workforce upon graduation, rather than continuing with graduate studies, their
employers are a major stakeholder in the outcomes of the program. Discussions with
campus recruiters and members of our Industrial Advisory Board have indicated an
existing emphasis on or a strong move toward modeling using the UML. While we
would not attribute the success of our students in their employment only to our
program’s emphasis on modeling, we do believe, however, that it is a prime factor
that attracts employers to our students. We also have anecdotal reports of our
students’ preference for a modeling-first approach to their work.

7.1 Preference for a Modeling-first Approach

A review of co-op employment evaluations provides anecdotal evidence of the value
of our students’ training to their employers. An engineering manager in an aerospace
company, which has hired many of our students on co-op and in full-time positions,
commented that the students have a strong focus on capturing requirements and
system modeling. An engineering vice-president, who has hired several of our
students and sponsored senior projects, commented that our graduates match up
favorable against some software engineers who have been working for him for five
years. A non-SE RIT faculty member, who manages interns for a health insurance
provider, noted a significant difference in how software engineering students learn
about a system. The SE students ask questions about components, architecture, and
interactions between the components, preferring a higher-level and more abstract
model-driven discussion. The computer science and information technology students
tend to quickly ask for examples of working code and begin understanding the system
from the bottom up. The SE students overwhelmingly believe they formed the base
for this methodology in Engineering of Software Subsystems when they were forced
to think abstractly about their projects using design patterns rather than code
implementations. Their skill in software system modeling improved in subsequent
courses with practice at higher levels of model abstraction.

7.2 Analysis of Formal Models

Even though the LTSA tool used in our concurrent systems course is not “industrial
strength”, one student used it on a co-op assignment. The student sensed that there
was a problem in a protocol that he was asked to implement but could not pinpoint the
problem. At this point, he could have built a skeleton implementation and observe its
operation. It might have been many hours of testing and debugging to uncover what
may be a subtle problem in the protocol. The student remembered the features
provided by LTSA; with an afternoon of effort he modeled the protocol, executed
traces, and uncovered a progress failure that prevented the protocol from continuing

14 James Vallino

to completion under certain circumstances. The student discussed this problem with
the hardware designers and they acknowledged that he had uncovered a problem with
the protocol. The model highlighted the exact problem that was latent in the system
and eliminated typical finger pointing between the hardware and software engineers.

7.3 Top Compensation

To the extent that salary is an expression of value to an employer then our program is
quite successful within the RIT community in our career-oriented mission. RIT’s
Office of Cooperative Education and Career Services tracks the hourly cooperative
rate, and full-time annual salaries that students receive upon graduation[28]. The
software engineering undergraduate program has a higher median starting full-time
salary than Computer Science, Computer Engineering, Information Technology, and
all other undergraduate engineering programs except for Microelectronics
Engineering. The SE program’s hourly rate for cooperative employment ranks third
in that group of 18 undergraduate programs, behind only Microelectronics and
Computer Engineering.

8. Conclusions

The RIT undergraduate program in software engineering aims to instill an engineering
mindset in students as they progress through the program. Formal mathematically-
based modeling is a key characteristic of contemporary engineering practice. Our
program exposes our students to both the informal modeling, which is more prevalent
in software engineering practice, and formal modeling, which has benefits derived
from its underlying mathematical rigor. Without the constraints of the traditional
curriculum models for computer science or computer engineering programs, we were
able to design a curriculum in which modeling applied to software development has a
prominent place in the curriculum. We believe that this emphasis on modeling
throughout the curriculum is a distinguishing characteristic between the science and
engineering of software development. As research in model-driven development and
model-driven architecture progresses, we will adapt our curriculum to ensure that our
students graduate with an ability to model complex software systems using state-of-
the-art practices and abstractions.

9. References

[1] M. Shaw, "Prospects for an Engineering Discipline of Software." IEEE Software, v7, n6,
Nov/Dec 1990, pp.15-24

[2] S. McConnell and L. Tripp, "Professional Software Engineering: Fact or Fiction?" IEEE
Software, Nov/Dec 1999, pp 13-18

[3] D. L. Parnas, "Software Engineering Programs Are Not Computer Science Programs." IEEE
Software, Nov/Dec 1999, pp 19-30

[4] P. J. Denning, "Who Are We? The Profession of IT" C. ACM, v44, n2, pp 15-19 (2001)

If You’re Not Modeling, You’re Just Programming: Modeling throughout an Undergraduate
Software Engineering Program 15

[5] T. B. Hilburn, “Software engineering education: a modest proposal.” IEEE Software, v14,
n6, Nov/Dec. 1997, pp 44 – 48

[6] J. F. Naveda and M. J. Lutz, “Crafting a baccalaureate program in software engineering.”
Proceedings of the Conference on Software Engineering Education & Training, April 1997,.

[7] Department of Software Engineering, Rochester Institute of Technology,
http://www.se.rit.edu.

[8] Accreditation Board for Engineering and Technology, Criteria for Accrediting Engineering
Programs. http://www.abet.org/Linked%20Documents-
UPDATE/Criteria%20and%20PP/E001%2006-07%20EAC%20Criteria%202-9-06.pdf

[9] M. Blaha and J. Rumbaugh Object-Oriented Modeling and Design with UML (Second
Edition). Prentice-Hall, 2005.

[10] D. Jackson “Alloy: A Lightweight Object Modeling Notation.” ACM Transactions on
Software Engineering and Methodology (TOSEM) v11, n2, April 2002, pp. 256-290

[11] J. Magee and J. Kramer Concurrency: State Models and Java Programs. John Wiley &
Sons, 1999.

[12] RIT Software Engineering, Program Flowchart
http://www.se.rit.edu/docs/documents/se_flowchart.pdf

[13] M. Prince ““Does Active Learning Work? A Review of the Research,” Journal of
Engineering Education, v93 n3, July 2004.

[14] M. Prince and R. M Felder “Inductive Teaching and Learning Methods: Definitions,
Comparisons, and Research Bases,” Journal of Engineering Education, v95n2, April 2006.

[15] D. Jonassen “Everyday Problem Solving in Engineering: Lessons for Engineering
Educations,” Journal of Engineering Education, v95n2, April 2006.

[16] Ludi, S., Reichlmayr, T., and Natarajan, S. “An Introductory Software Engineering Course
That Facilitates Active Learning,” Proceedings of ACM SIGCSE Conference, St.Louis, MO.
February, 2005.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns Elements of Reusable
Object-Oriented Software. Reading: Addison-Wesley, 1995.

[18] S. R. Chidamber and C. F. Kemerer "A Metric Suite for Object Oriented Design." IEEE
Transactions on Software Engineering, v20n6, June 1994.

[19] Eclipse Metrics Plug-in, http://metrics.sourceforge.net/.
[20] Industrial Logic, Design Patterns Playing Cards,

http://www.industriallogic.com/games/dppc.html.
[21] J. Vallino “Design Patterns: Evolving from Passive to Active Learning.” Proceedings of

the Frontiers in Education Conference. Boulder, CO. November 2003.
[22] M. Lutz “Exploratory Mathematics: Experiences With Alloy In Undergraduate Formal

Methods,” Proceedings of 2006 American Society of Engineering Education Conference,
Chicago, IL. June 2006.

[23] M. Lutz and J. Vallino “Concurrent System Design: Applied Mathematics & Modeling in
Software Engineering Education,” Proceedings of 2005 American Society of Engineering
Education Conference, Portland, OR. June 2005.

[24] J. Vallino and R. Czernikowski “Thinking Inside the Box: A Multi-Disciplinary Real-
Time and Embedded Systems Course Sequence,” Proceedings of Frontiers in Education
Conference. Indianapolis, IN. October 2005.

[25] B. P. Douglass, Doing Hard Time – Developing Real-Time Systems with UML, Objects,
Frameworks, and Patterns. Addison Wesley, Reading, 1999.

[26] L. Bass, P. Clements, and R. Kazman Software Architecture In Practice. Addison-Wesley,
2003.

[27] SDMetrics.com, Software Design Metrics Tool for UML, http://www.sdmetrics.com.
[28] RIT Office of Cooperative Education and Career Services “All Programs - Salary Data and

Program Information.” http://www.rit.edu/~964www/salary_program/AllPrograms.htm.

