
A Relook at the Introduction to Software Engineering Course 

The Reality of the Course 

The reality of undergraduate computing education is that the vast majority of students do not go 

through software engineering curricula where there is time to address the breadth of the software 

engineering body of knowledge. The Software Engineering 2014 Curriculum Guidelines [1] lists 

nine top-level knowledge areas for software engineering programs with a minimum of 467 

"lecture" hours of material. For the majority of students who are in computer science, computer 

engineering, or other computing programs, they will receive their software engineering education 

in a single course, Introduction to Software Engineering, which is expected to cover software 

engineering as a topic. Some of the topics in the software engineering Knowledge Areas may be 

covered by other courses in the non-software engineering student's program, but if you look at 

for example, the Computer Science 2013 Curriculum Guidelines [2], the task of covering 

software engineering is still daunting. These guidelines define 18 Knowledge Areas three of 

which, Software Development Fundamentals (SDF), Software Engineering (SE), and Social 

Issues and Professional Practice (SP), contain knowledge that falls into the software engineering 

realm. Guideline comments identify the SE and SP knowledge areas as specific curricula areas 

where teamwork and communication soft skills will be learned and practiced. The Software 

Engineering Knowledge Area, which at 14 pages is the longest non-cross-cutting Knowledge 

Area in Computer Science 2013, identifies 60 Core topics with 69 Learning Outcomes, and 54 

Elective topics with 56 Learning Outcomes. It will be a difficult syllabus design task to cover 

that material at any level of detail in a single course. 

The breadth and depth of the software engineering Knowledge Areas leads to a lament that is 

often heard at software engineering education conference sessions. The faculty members 

responsible for software engineering in the curriculum ask “How am I going to fit the core SE 

topics and the ‘soft’ teamwork and communication skills in the single software engineering 

course in our computer science curriculum?” The Introduction to Software Engineering course 

often addresses this by being taught as a broad overview of topics in software engineering. The 

course uses one of the classic software engineering encyclopedic textbooks to cover this broad 

range of topics. There is a term-long team-based project. In many computing curricula, this is the 

first, and often only, coursework where students tackle a large team project. In the project work, 

students demonstrate their transference of knowledge of software engineering principles and 

practices gained from lecture material and reading the textbook to actual project work. 

Our Experiences with the Course 

Of all the courses in Rochester Institute of Technology software engineering curriculum, our 

SWEN-261 Introduction to Software Engineering course is the one course that we never feel we 

have done correctly. The students take the course in their second year after a first-year computer 

science sequence. This is perhaps a bit earlier in our students' program than at other institutions. 

The course has a broader constituency than just software engineering students because it is also 

required in the computer science, computer engineering, and computational math programs. In 

the course's greater than twenty year history, we have reworked it at least eight times with most 

of those reworks being extensive redevelopment of most of the course.  



We have had versions that used the Personal Software Process (did we get pushback from 

students on that) to a full-on agile methodology [3] (it seemed like the students were not learning 

enough); were heavy on process with less than a 1,000 lines of code in the project (students 

nicknamed the course Document Engineering) to minimal process, heavy design, and >10,000 

line project implementations (the last three weeks of the term were just a hack fest); used no 

textbook and our own lecture notes (that was a lot of preparation work) to a classic software 

engineering tome as the textbook (which only half the students bought and few of them read); 

had teams create full use case requirements, specification, design, and test plan documents 

(Document Engineering again) to preparing user stories, design, and simple acceptance test 

specifications (this seems like about the right mix); in different versions, we had the project 

implemented in C++, Java, and Python and as a desktop application and a web application; it has 

been delivered blended [4] and completely face-to-face. In one version of the course, we choose 

one of the classic texts with the idea that in the Introduction to Software Engineering course we 

would do only surface coverage. The software engineering students would keep it through their 

entire undergraduate experience, and we would be able to use it for reference material in most 

subsequent courses in our curriculum. That idea turned out to be a non-starter for several 

reasons. The students, especially the non-software engineering students, did not buy into it, or 

buy the text, and our faculty realized pretty quickly that "if everyone used the same textbook" 

was not an approach that would work across our curriculum. 

The faculty in our program struggled with this course because we never felt like we had gotten it 

right, and we were tired of redeveloping the course every two to three years. The students also 

did not think that we got the course right. In addition the issues mentioned above that students 

expressed with the course, there were several perennial themes in end-of-term course evaluation 

comments. These included: 

 There is no connection between the lectures and the project work. 

 The exams are too much about buzzwords and memorization. 

 There was a steep learning curve for the framework tools used in the project work. In 

various versions of the course this included C++ Xforms, Java Swing, and Django. 

 

An additional problem that we found with the last version of the course was that students were 

not building their object-oriented design skills in the course. This course used a web-based 

project written in Python on top of the Django framework. The low level of design skills was 

noted by faculty teaching the following design course, SWEN-262 Engineering of Software 

Subsystems, which emphasizes design abstraction and design patterns. Students were talking 

about design information learned in their first-year CS course and not the Introduction to 

Software Engineering course. The department's Industrial Advisory Board also identified this as 

a problem after having discussions during our annual meeting with students at all year levels. 

Learning Goals for the Course 

In considering yet another redesign of our Introduction to Software Engineering course, we gave 

some reflection on why we had so much trouble getting this course "right". We were continually 

balancing multiple requirements for the course including it needing to be an introduction to the 

breadth of software engineering, and a significant team project experience for the students. In 

reviewing the course's history, we decided that the reason this course was changed so frequently 



is that with each redesign we always started with the same basic premises for the course, namely, 

it needed to provide a broad overview of the software engineering discipline, and it would use 

one of the classic software engineering textbooks that covers all of those areas. For this 

redevelopment, we dropped both of those requirements. 

What are the key software engineering learning outcomes that the course should deliver? In 

many respects, the design of this course is more important for the other computing programs that 

require it than for the software engineering program because this is often the only exposure to 

software engineering principles that the non-software engineering students get. It will be OK if 

some topics found in classic introduction courses and considered essential for a full 

understanding of software engineering are left out. Those that we had covered previously were 

not being covered at a level that imparted that full understanding to begin with, and the software 

engineering students would see the full breadth and depth of those topics later in their program.  

With our redevelopment guidelines in mind, we set the primary goals for the course to be: 

 Instill good entry-level software engineering practices in the Computer Science and 

Computer Engineering students. Of course, the Software Engineering students would 

benefit from this also. This is particularly important at our institution with all these 

programs having required co-op that students start the summer after taking this course. 

 Reinforce and expand on basic object-oriented design skills introduced in the first-year 

CS sequence. Particularly important for the software engineering students as preparation 

for their design courses. 

 Design the course around what we have said countless times in recruitment and open 

house activities, namely, that software engineering is about engineering design of 

software, software product development, teamwork, and communication. 

 Have students follow contemporary software development practices and use up-to-date 

development tools on their term-project. 

Guidelines for the Course Redesign 

The Introduction to Software Engineering course is a large service course for our department. As 

already mentioned, it is required by several computing programs. Students typically take the 

course in their second year after a first-year CS sequence that includes object-oriented 

programming. The programs have this course as a prerequisite for going on co-op. That last point 

meant that the course topics should impart knowledge and skills that could be immediately 

applied during interviews and on co-op. Over 450 students enroll in this course each year. It is 

taught on both twice a week and three times a week semester schedules each term with more 

than 10 sections each term. This is a large number of adjuncts teaching sections. We designed 

course content in 25 minute "chunks" which provided 6 chunks of course content per week for 

all weekly schedules. Different activities occur in a course chunk including lecture and 

individual or team exercises. All but a few of the lectures stay within one chunk of class time. 

We took an engineering approach to the design of the course specifying a requirement and how 

to address it. We set a requirement for the topics to be roughly distributed as 35% design, 35% 

process, 15% teamwork, and 15% communications. Previous versions of the course concentrated 

on design and process in varying degrees. In all those versions, we put the students on teams and 



asked them to tackle communications tasks, but we never explicitly spent course time discussing 

either of those areas except for a single one hour Teaming lecture. 

The selection of course topics involved a lot of compromise and judicious choice/elimination of 

topics. In selecting course topics and planning the schedule, we wanted to maintain our software 

engineering program's pedagogical philosophy which is to emphasize class exercises, a 

collaborative environment, and faculty interaction with teams. The topic coverage was to 

concentrate on the most important topics with coverage and practice in depth rather than breadth. 

We applied a Test-First consideration when selecting topics: For every topic, we asked what we 

will, or currently did, hold the students responsible for, and if it did not rise above Bloom 

Taxonomy Level 1 - Remembering [5] we considered dropping the topic. This addressed the 

student perception that the exams were buzzword and memorization exercises. 

The design topics were selected to elevate the student's object-oriented design skills to a level 

beyond the design of single classes. The process topics were selected to describe the Scrum 

practices that the teams would do and how those practices supported the overall productivity of 

the team. Students would either individually or on the term-project team experience all of the 

design and process concepts that were discussed in class. Emphasizing practice in depth helped 

to reinforce the connection between the classroom lectures and the project work that the students 

were doing. 

We settled on the following 31 topics to include in the course. Each topic is in what we consider 

its primary area though several topics will overlap between two or more areas. Within a topic 

area, the list is in chronologic order through the term. Fuller details about the course topics can 

be found on the course's public website [6]. 

Design Topics Process Topics 
Domain analysis 

Review OO concepts 

Object-oriented design I 

Appreciation for software architecture 

Web architecture and development 

Domain-driven design 

State-based behavior I 

Unit testing 

Object-oriented design II 

Sequence diagrams 

State-based behavior II 

Code metrics 

Appreciation for usability 

Appreciation of software development 

process 

Introduction to OpenUP phase X    

Defining project requirements 

Sprint planning 

Acceptance testing 

Version control concepts 

Backlog refinement and estimation 

Code coverage 

Code review 

Communications Topics Teamwork Topics 

Effective team communications 

Design and code communication 

Sprint demos 

Design documentation 

Project presentations 

Team Formation 

Personality types 

Sprint retrospective 

Professional responsibility 



The final count of topics does not exactly adhere to our percentage goals, but generally does 

achieve the desired balance. This selection of course topics required the elimination of several 

topics which are traditionally seen in Introduction to Software Engineering courses and we had 

covered in previous versions of our course. Eliminated topics included: discussion of multiple 

software process methodologies, discussion of multiple software architectures, details of 

requirements engineering with use case specification of requirements, functional specifications, 

risk management, and discussion of design patterns. In some cases, we pulled material from 

courses later in the software engineering curriculum and placed it in this course because we felt it 

was important for all students taking this course to be exposed to it and not just the software 

engineering majors. This was particularly done in the next design course which had material 

added to it because the students were not coming in with adequate object-oriented design skills 

from the previous version of this Introduction to Software Engineering course. 

The topics that are listed as Appreciation of X are designed to not cover those areas to any level 

of detail as was done in previous versions of this course. The learning outcome was to have the 

student gain an appreciation for what the area was and why it was important. For example, a 

learning outcome for Appreciation of Software Development Process is "Identify the benefits of 

a formal software development process." We want the student to appreciate the need for 

following a defined software development process. We do not cover any methodologies other 

than OpenUP [7] which the students use as a strategic process to define the team's focus through 

major project phases. The project teams use Scrum practices (user stories, sprint planning, 

backlog refinement, daily standups, sprint retrospectives) as a tactical process. For software 

architecture our aim is similar wanting the students to understand the benefits of having a 

defined software architecture. We do not discuss architectures and remove all architectural 

design by imposing a three-tier (User Interface, Application, Model) architecture on the project. 

We did not believe that there was a textbook that aligns with this set of topics which led us to 

abandon the use of a classic software engineering encyclopedic textbook in favor of resources 

that were web-based or we authored ourselves. Fortunately, all current students have access to a 

full-suite of lynda.com [8] videos and Skillsoft [9] books. We make extensive use of short videos 

and specific relevant sections of books from these sources along with YouTube videos and 

tapping into a wealth of websites. 

Each course topic is described on a topic page which contains the following sections: 

 Introduction – general description of what the lesson is covering 

 Learning Outcomes – a lesson typically has 4 to 6 learning outcomes 

 Study Resources – the number and type of resources varies from lesson to lesson. The 

types of resources include: Videos, Web Articles and Blogs, Books, Wikipedia (since this 

is the first place that the students go we felt compelled to include Wikipedia references) 

Each resource provides a link to the online resource. 

 Class Lecture – lectures are typically 10+/- slides. A few lectures extend to take two class 

chunks. Each topic page has a link to a PDF of the lecture. 

 Exercises – the exercises are both individual and team exercises that are done before, 

during, or after class. The timing and nature of the exercises varies from lesson to lesson. 

Individual before-class exercises are often a viewing/reading assignment with completion 

of a short (5 minute) on-line quiz by the start of the class when the lecture will be given. 



A screen capture of a typical topic page showing the learning outcomes and resources is shown 

as Figure 1. 

 

Figure 1 - Screen capture of part of typical topic page 



Elements of the Course and Grade Breakdown 

The overall course grading is composed of 57% individual and 43% team-based activities. The 

individual activities include two in-class 50 minute exams, a two-hour final exam, and a 

collection of individual exercises. The team-based activities are all associated with a term-long 

team project worked by a team of 4 or 5 students. The project work is delivered over 5 sprints 

along with a number of shorter team exercises that get submitted. The contribution of these 

elements to the final grade is shown in Table 1 below. 

Table 1 - Contribution of Course Components to Final Grade 

Course Component Percentage of Final Grade 

Two in-class exams 10% each 

Final exam 25% 

Term project 43% (40% over 5 sprints, 3% for team 

exercises) 

Individual Exercises and online discussions 12% 

  

The three exams are a combination of short answer questions and longer case study questions 

which result in the generation of one or more project artifacts. For all three exams, we allow the 

students to bring one 8.5" x 11" information sheet with whatever information is desired. The 

short answer questions are designed to go beyond memorization and recall. The following is an 

example of a question asking about the sprint planning process. 

 

The longer case study questions are based on a description of a small software system. A 

question may require the student to create user stories, a class structure diagram, a sequence 

diagram for a system feature, or a statechart for a web application interface or to define the 

behavior of a class. The case study questions that require a class decomposition have a 

complexity in the range of 10 classes. 

The team and individual exercises vary in complexity and difficulty. Some are as simple as doing 

a screen shot to show that an online tool, such as a Trello planning board, has been setup. Others 

require team discussion or individual programming activity. Most of the Before-Class individual 

exercises are completion of a small quiz assessing a minimal knowledge of the topic based on 

reading and viewing a subset of the resources provided on the topic page. Most exercises are 

worth one point and are graded more on engagement than having a completely correct answer. 

Some exercises, particularly the ones involving programming activity, are graded more 

rigorously and are worth multiple points. An example of two individual exercises is shown in 

Figure 2. 

1. (5 points) 

What is the purpose of the sprint planning meeting? How does a 

team select the user stories to develop in the next sprint? Why might 

a team skip a story for a sprint? 

 



There are a total of 39 individual exercises and 17 team exercises. The individual exercises get 

graded on a stepwise scale based on the percentage of points obtained: >80% - 12 points; > 60% 

- 9 points; >40% - 4 points; <= 40% - 0 points. The team exercise grade is computed as a straight 

percentage of the 3 points that they contribute to the final grade. 

Figure 2 – Example individual exercises 

To help ensure that the students are aware of the benefits of OpenUP as a strategic process, at the 

beginning of each phase, we review what the focus had been in the last phase and how the course 

topics and team activities supported that focus. With OpenUP the four phases and their focus are: 

Inception: reducing requirements risk; Elaboration – verifying proposed software architecture 

and reducing architectural risks; Construction – building out the product; Transition – final 

deployment and team shutdown. 

Term Project Guidelines 

There were several guidelines that were set for the term-project that students would work on 

through the course. These were set by the faculty when the redevelopment of this course was 

discussed during faculty and curriculum meetings. These guidelines included: 

 The team-based project should run through the entire term with teams of 4 or 5 students. 

 The project should use be a web-based application using Java. 

 Any web framework that is used should be lightweight and not dictate the design thus 

requiring all students to do notable object-oriented design. 

 The project does not have to include all of the elements of current web applications since 

the focus of this course is not web application development. 

Considering these guidelines, we decided on the following requirements for the project: 

 The project will be implemented on the Sparkjava [10] web micro-framework. 

 Client-side work will be only minimal HTML or possibly some CSS, i.e. there will be no 

UI design, anything beyond that which the project needs will be provided to the team. 

 The project's implementation focus will be on backend Java. 

 The project will not require persistent storage, i.e. there would be no database work. 

 Following Scrum practices, there will be no defined roles on the team. 

 The team will use contemporary tools: GitHub/git for artifact control, Trello for planning, 

Slack for intra-team communications. 



 

Teams deliver their project work in five sprints tied to the four OpenUP project phases. There are 

two sprints during the Construction phase. Each sprint is approximately three-weeks long. 

Rubrics are used to perform the sprint grading with the exact dimensions varying from sprint to 

sprint. For example, the first sprint in the Construction phase (Sprint 2) has a documentation 

deliverable but no functionality deliverable. The second sprint in that phase delivers the final 

functionality, a demo, but no documentation. Sprint 4 in the Transition phase delivers the final 

documentation. An example of three of the nine dimensions in the rubric grading for 

Construction - Sprint 3 is shown in Table 2. 

Table 2 – Example Rubric Dimensions for Sprint Grading 

Functionality 

50% 

Minimum viable 

product (MVP) 

feature set is 

bugfree. At least 

two 

enhancement 

features are 

bugfree. 

MVP feature set 

is bugfree. At 

least one 

enhancement 

feature is 

bugfree. 

MVP feature set 

is bugfree. 

MVP feature set 

has notable 

bugs. 

Little 

functionality 

seen in the 

product. 

Adherence to 

Architecture 

and Design 

Principles 

10% 

High adherence 

to architectural 

separation and 

OO design 

principles. 

Good adherence 

to architectural 

separation and 

OO design 

principles with 

only a few issues 

found. 

Adherence to 

architectural 

separation and 

OO design 

principles is 

apparent but 

consistency is 

lacking. 

There are 

multiple major 

issues with 

adherence to 

architectural 

separation and 

OO design 

principles. 

There is little 

evidence of 

adherence to 

architectural 

separation or OO 

design principles. 

Unit Tests 

and Code 

Coverage 

5% 

Full set of high 

quality unit tests 

with good 

mechanics 

providing over 

90% coverage. 

Full set of unit 

tests with a few 

issues with 

mechanics 

providing over 

80% coverage. 

Unit tests omit 

tests in several 

areas, have 

notable issues 

with mechanics, 

or provide less 

than 70% 

coverage. 

Significant unit 

tests are 

missing, very 

poor mechanics, 

or provide less 

than 60% 

coverage. 

Minimal set of 

unit tests with 

minimal use of 

JUnit, Mockito, 

and other 

mechanics, or 

providing less 

than 50% 

coverage. 

 

In each sprint, the team is held accountable for sprint planning, appropriate use of version control 

including feature branching, and intra-team communication. The instructor uses the digital audit 

trail available in the tools used for these activities—Github/git, Trello, and Slack, respectively. In 

addition to peer evaluations that are done mid-project and end-of-project, the instructor uses this 

evidence to make individual positive or negative adjustments to team grades based on an 

individual student's contribution. The mid-project peer evaluations are mostly considered 

formative and do not affect the student's grade immediately. The instructor provides feedback to 

each student individually at that point. After the end-of-project peer evaluation, the instructor 

will compute the individual adjustment factor for each student, if needed, and apply it to the 

entire project grade for the student. Our experience is that after the first peer evaluation, poor 

performing students will step up their game with the end-of-project peer evaluation showing a 

more even distribution of the contributions. 



Term Project Resources 

There are a large number of technologies that teams will use during the project. Most students 

have experience with Java and source control from prerequisite coursework. To help students 

with the others, we provide a Resources page [11] which lists web resources for tutorials and 

other information to help the students learn the technologies. Through the project the students 

will be required to work with these technologies: 

 Java 8 – implementation language 

 Sparkjava web micro-framework 

 FreeMarker – HTML template engine 

 Maven – build tool 

 Junit – unit testing 

 Mockito – mock objects for unit testing 

 Jacoco – code coverage 

 MetricsReloaded – code metrics 

 Trello – planning 

 Slack – team communications 

 GitHub/Git – artifact control 

 Development IDE 

 pandoc/MiKTeX – markdown to PDF

At the start of the Elaboration phase, we introduce the students to the "sample webapp". This is 

an example web application, a simple number guessing game, which we regularly use as a 

reference point. The implementation shows how to work within the Sparkjava web framework 

with good coding style and architectural separation. All of the basic interactions including some 

features of the FreeMarker template engine are demonstrated for the students. Only Ajax 

exchanges are not demonstrated. 

One of the requirements for the project was that there was a shallow learning curve for working 

with the chosen web framework. This was not the experience that we had when we had a project 

that was Python/Django-based. Our student club had to offer many tutoring sessions to help 

students get up to speed in the Django environment. In this version of the course using Sparkjava 

and our sample webapp, in 15 to 20 minutes during the Web architecture and development class 

session we take a class of 20 from downloading a zipfile, to building the sample webapp, running 

it locally and guessing numbers in a browser, making a modification to server-side Java code, 

and seeing the result in a new running webapp. This is certainly a shallow learning curve for the 

web application technology. 

We also use the sample webapp to get the students familiar with the Sparkjava and FreeMarker 

technologies. This is done by having each student implement a number of enhancements to the 

sample webapp. All the students are required to implement two enhancements and then can opt 

to get extra exercise points by implementing up to two additional enhancements. The four 

enhancements are described via user stories and acceptance criteria written in the format that we 

require the students to use on their term-project. An example of one of the required 

enhancements that each student must implement is: 

User Story 

As a player I want to see the percentage of games I have won in my current session.  



Acceptance Criteria 

1. Given that the player is connecting to the web application for a new session when the 

Home page displays then the message "No game stats yet" will be shown. 

2. Given that the player has not won any games when the player loses a game then the 

message "You have not won a game, yet. But I *feel* your luck changing." will be 

shown on the Home page 

3. Given that the player has not won any games when the player wins a game or 

Given that the player has already won a game when the player finishes a game 

then the message "You have won an average of X% of this session's N games" will 

be shown on the Home page where X is the percentage of wins rounded to the nearest 

whole percentage and N is the total number of games for this player. 

When the course covers unit testing with mock objects, the students get a copy of the sample 

webapp as an exemplar of a full set of high-quality unit tests. Each term, we have added to the 

sample webapp to move it toward being an end-to-end example of all the artifacts that the teams 

will be required to generate including user story requirements with acceptance criteria and 

solution tasks, an acceptance test plan, and design documentation. We are not there yet. 

WebCheckers 

Given the requirements that we set for the project, we decided to resurrect in a web-based 

version of an older Checkers desktop application that we had used in the 2005 timeframe. The 

application is called WebCheckers and is presented to the students with three required top-level 

features and several possible enhancements. A team is required to implement two of the 

enhancements to receive the full functionality credit. The minimum viable product (MVP) 

implementation must be bugfree before enhancement functionality is considered (see the first 

rubric dimension in Table 2 above). The full extent of our description of the requirements for this 

project is: 

The Product Owner desires a minimal viable product (MVP) which includes these features:  

1. Every player must sign-in before playing a game, and be able to sign-out when 

finished playing. 

2. Two players must be able to play a game of checkers based upon the American rules.  

3. Either player of a game may choose to resign, at any point, which ends the game. 

The enhancements of interest to the Product Owner, in no order of preference are: 

1. AI Player: Players may play a game against an artificial intelligence player. 

2. Asynchronous Play: Players can play asynchronously. 

3. Multiple Games: A player may play more than one game at a time. 

4. Player Help: Extend the Game View to support the ability to request help. 

5. Replay Mode: Games can be stored and then replayed at a later date. 

6. Spectator Mode: Other players may view an on-going game that they are not playing. 

7. Tournament Play: Players can enter into checkers tournaments including player 

statistics. 



From this project description the teams develop user stories for MVP and for two enhancements 

to the product during Inception – Sprint 0. To get all the teams initially headed in the same 

direction, we define the two user stories and two technology spike stories that all the teams will 

complete for their initial implementation sprint in Elaboration – Sprint 1. These user stories are: 

 User stories 

o Player Sign-in: As a Player I want to sign-in so that I can play a game of checkers. 

o Start a Game: As a Player I want to start a game so that I can play checkers with 

an opponent. 

 Spike stories 

o Web Architecture: As a developer I want to learn the Web technologies Spark and 

FreeMarker so that I can develop the product. 

o Domain-driven Design: As a developer I want to learn Domain-driven Design so 

that I can develop the product. 

Each team receives a GitHub repository with the essentials of a build configuration file, a home 

page that simply welcomes the user to WebCheckers, and all of the client-side template files and 

JavaScript code (~1900 LOC) for display of and interaction on a checkers board. The gameplay 

interaction includes identification of active player and moving that player's pieces onto empty 

squares. Validation of the moves is done through an Ajax exchange with the server. There is a 

description of the data structure that the UI-tier code must create for the view of the 

checkerboard to display correctly, and a statechart description of the Ajax exchanges that the 

server-side must process to effect gameplay. Teams can do client-side JavaScript coding only 

with instructor approval and it is rarely given because there is no need for it. The focus of the 

project is object-oriented server-side design and implementation, and that is where the instructors 

keep the teams focused. 

For WebCheckers Elaboration – Sprint 1, which is validating and reducing architectural risks, 

the two user stories require the team to work the entire web application stack and understand the 

data structure required for display of a checkerboard. The only element that they will need but do 

not get to implement is the server-side Ajax exchange. The two spike stories are done as part of 

individual exercises adding feature enhancements to the sample webapp and other individual 

exercises associated with course lessons. The teams then continue in the Construction phase to 

implement the rest of the WebCheckers functionality. Our experience through two terms has 

been that a large majority of teams get to the point of implementing all of MVP and at least one 

enhancement. The teams that do not achieve that level of completion usually suffer from the 

standard teaming issues that are seen on team-based student projects. 

Our Approach for Developing the Course 

One unique approach that we took while developing the course material itself was to treat it like 

a software development project and follow practices similar to what the students were required to 

do on their term-project work. This gave us valuable insight into the problems that the students 

would encounter while doing their project work. Each course topic was created as a "project 

task" or user story as the students would within a Trello planning board. We created a Product 

Backlog of all the course topics. As development progressed, the topic cards moved through 

Design, Design Review, Development, Content Review, Ready to Merge, and Done. This 



mirrored how the student teams would plan and track the development of user stories in their 

project. A screen shot of our Trello planning board during course development is shown in 

Figure 3. 

 

Figure 3 – Trello planning board for course development 

In our department, we maintain common git repositories for course materials for almost all 

undergraduate courses. This is an invaluable resource for instructors of the course particularly 

new instructors and adjuncts teaching the course. While developing this course, we followed the 

same approach that we would ask the students to do in their project work. We developed each 

course topic (user story) as a separate feature branch in the course repository. When the story had 

gone through the full development, we needed to merge the new material into the public website 

along side of the material for the prior version of the course which was running concurrently in 

10 other course sections in the term that this version was piloted. This gave us the experience of 

doing independent development and then the problems that the students would see when merging 

independent work into the main development path. Error! Reference source not found. is a 

picture of our git course repository at one point during the course development. 

Finally, to maintain communication throughout the development and with continuing fixes we 

were in daily contact using a Slack workspace, exactly the same approach that we would ask the 

students to use. This also provided a great insight into the mechanics of using this technology. 

Results of the Redevelopment 

We have analyzed data from the pilot term in spring 2017 (10 original sections and 2 pilot 

sections) and for the first term rolled out to all sections of Introduction to Software Engineering 

in fall 2017 (13 new sections). Because of the large shift in course content and the level of 

coverage, there were few assignments or exam artifacts that we thought would provide insight 

for comparing student achievement between the original version and the new version. We had to 

rely on student perceptions as measured in course evaluation data. Since a primary goal for 

undertaking this redevelopment was to eliminate the perennial student complaints seen in course 

evaluation comments and heard in discussions with academic advisors, using an instrument 

which measures student perception appears valid. We chose to analyze data from six questions 

that are an evaluation of the course and not the instructor though there is no way for us to tell that 

the students have not conflated these two effects in their evaluations. 



Table 3 below shows the analysis of the course evaluation data. For each question there is data 

for the three sample sets (10 sections taught with previous material, two pilot sections of the new 

material, 13 sections taught with new material) which includes the count of course evaluation 

responses received, the percentage of responses that were Agreeing/Neutral/Disagreeing, and a 

Kruskall-Wallis test P-value adjusted for repeats. This is a standard test used for the analysis of 

course evaluation data at our institution because it does not require a normally distributed data 

set which is not how we expect for course evaluation data to be distributed. 

For each question, we tested whether the median of the responses for each set of data for the new 

course differed from that given by students in the previous version of the course. A P-value less 

than 0.05 indicates a statistical difference in the two populations that is significant.  

 Advanced my understanding: Both analyses indicate a change in the agreement level for 

the course advancing the student's understanding of the subject. For the pilot sections, 

there was a higher agreement level for advancing the student's understanding. For the full 

rollout term, the previous version of the course had a higher agreement level. 

 Learned something of value: In the pilot term there was greater percentage of agreement 

that the student learned something. In the full rollout term, there was no change in the 

agreement level between the new and old versions of the course. 

 Course was well organized: Both analyses indicate that the students had a higher 

agreement level for the old course being organized compared to their view of the new 

course's organization. During the pilot term, the new course material was rolling out only 

hours before the students needed it, and sometimes later than originally scheduled. There 

Figure 4 - Feature branches for course topic development 



were also several shuffles of the schedule done during the term. In the full rollout term, 

the syllabus and schedule were mostly stable, but for 10 of the 12 instructors it was all 

new material so they may have presented the course in a less organized manner. 

Table 3 – Course evaluation data analysis 

Question Course n 

Strongly 

Agree/ 

Agree Neutral 

Strongly 

Disagree/ 

Disagree 

Kruskall-

Wallis 

P-value 

This course advanced 

my understanding of the 

subject. 

Previous S2017 134 83.6% 12.7% 3.7%   

Pilot S2017 34 100.0% 0.0% 0.0% 0.0117 

Full F2017 173 74.0% 12.7% 13.3% 0.0394 

I feel that I learned 

something of value from 

this course. 

Previous S2017 136 85.3% 9.6% 5.1%   

Pilot S2017 34 100.0% 0.0% 0.0% 0.0178 

Full F2017 173 77.5% 12.7% 9.8% 0.0734 

The course was well 

organized. 

Previous S2017 134 68.7% 20.1% 11.2%   

Pilot S2017 34 50.0% 29.4% 20.6% 0.0378 

Full F2017 173 42.2% 18.5% 39.3% <0.0001 

The objectives as stated 

on the course syllabus 

for this course are 

valuable. 

Previous S2017 134 84.3% 9.7% 6.0%   

Pilot S2017 34 88.2% 8.8% 2.9% 0.5463 

Full F2017 173 77.5% 16.2% 6.4% 0.1557 

Overall, I would 

recommend this course 

to other students. 

Previous S2017 136 47.8% 36.8% 15.4%   

Pilot S2017 34 64.7% 20.6% 14.7% 0.1453 

Full F2017 173 40.5% 27.7% 31.8% 0.0171 

  

    

Much more 

than/More 

than most 

courses 

About 

average 

Much less 

than/less 

than most 

courses   

Compared to similar 

courses, the amount of 

work (reading, writing, 

etc.) in this course was: 

Previous S2017 136 72.1% 25.0% 2.9%   

Pilot S2017 34 91.2% 8.8% 0.0% 0.0189 

Full F2017 173 79.8% 18.5% 1.7% 0.1099 

 

 Objectives are valuable: Both analyses indicate the same agreement level for the course 

objectives being valuable. The statement of the course objectives was not changed, and 

the new content and delivery did not change the students' perception of their value. 

 Would recommend the course: In the pilot term, there was no difference in the agreement 

level to recommend the course. In the full rollout term, the students were less likely to 

recommend this course than they were for the previous version of the course. 

 Amount of work required: In the pilot term, the students had a higher agreement level that 

the course involved more work than the students in the previous version. In the full 



rollout term, the students did not differ in their agreement level. This course has always 

had a large workload in addition to the work/effort involved with the team activities 

which is new for many students. In the full rollout term, there were significantly 

improved resources to help the students get through aspects of the course and project 

development. These were added as a result of lessons learned in the pilot term. 

The results of this analysis are as we expected and positive for an improvement in student 

perception of the new course, except course organization, during the pilot term. During the full 

rollout term, the analysis is not as universally positive for the new version of the course. There 

are two areas of student perception of the new course in the full rollout term that we will 

continue to track. These are Advanced understanding and Recommending the course. There are 

several factors that might explain why the students do not have a high a perception of the new 

course in these areas compared to the previous version and compared to the section in the pilot 

term. The most likely factor is that for 10 of the 12 instructors in the full rollout term, this was 

the first time that they were seeing the full details of the course and teaching it. There are 

typically many rough spots when an instructor teaches a course for the first time especially one 

that they did not develop. It was not made easier for the instructors that significant fixes were 

being put in place in close to a just-in-time delivery. A second possible factor is that the technical 

design content in the course has increased markedly from the old version. Many of the adjuncts 

who teach the course are not active developers and this material may be outside of the areas of 

expertise. We do not think that this will prevent them from becoming proficient instructors for 

this course, but we will continue to track this to see if the perceptions change. 

A review of the text comments made in the course evaluations showed that the problems with 

memorization for exams, there being no connection between class lecture and the project, and the 

steep learning curve for the technologies has been eliminated. There were suggestions for aspects 

of the project and the technologies that needed clarification. There were requests for more 

interactive activities and team project work during class time. Not unexpectedly, there were 

complaints about keeping track of all the moving parts in the course schedule. These comments 

were all folded into FIXs in the course development Trello board. Some of them get addressed 

with each subsequent offering of the course. 

A number of students also commented about being required to do some reading or video 

watching to answer a quiz before class, and then hear about that material in a lecture during 

class. When we started developing the course, we debated using a totally flipped classroom 

approach. What we have is a hybrid. There is a small amount of before-class work to answer 

several simple questions in an on-line quiz. These questions require minimal study of the 

required resource material. The lecture discussion, which typically is less than 25 minutes, 

reinforces the material and emphasizes the approach that the students will use on their project 

work. One concern that we had with a fully flipped classroom for this course is how well this 

could be handled by the large number of adjuncts teaching the course. Our adjuncts typically 

look for clear defined guidance on what has to be taught each class or each week. The flipped 

classroom has a lot looser structure that we think will not work well with many of our adjuncts.  

There are additional anecdotal results that indicate we have achieved the goals for this 

redevelopment effort. With the previous version of the course, the mentoring hours that our 

student club held had many requests for help with the Django web framework. This demand 



caused the club to create special tutoring sessions that were held multiple times in the early 

weeks of the term. When the new version fully rolled out, the club's Mentoring Head noticed that 

there was a sharp drop-off in all requests for mentoring help for the Introduction to Software 

Engineering course. They have also seen a reduction by 50% of the number of students attending 

exam review sessions. 

Several instructors have received comments from students taking the course that indicated the 

material was very helpful during a co-op interview and when working in a co-op position. 

Comments such as the following have been received: 

 

Discussion 

The results that we have achieved continue to be positive. This was a complete rework of a major 

service course in our curriculum required for students in four programs. The data for student 

perception of the course as given in course evaluations does not show a universal improvement 

from the previous version of the course, but it may too early to see the steady-state student 

sentiment because the bulk of the instructors are on their own learning curve with the course 

material. The anecdotal evidence in terms of student comments has been positive with several 

instructors hearing comments of how students immediately put the knowledge and skills learned 

in the course into use on co-op interviews and positions. To the extent that preparing student for 

their first co-op was a goal, this redevelopment was successful. The perennial complaints 

(buzzword memorization exams, no connection between lecture and project, steep learning curve 

for tools used on project) through several previous versions of the course are no longer being 

heard. 

The course does have areas where there needs to be continued development. Each term the 

course instructors create FIX cards in the course redevelopment Trello board. At an end-of-term 

I just started a new job at a software startup in Boston, called Burst. I have been 

applying almost everything we learned in class this semester. Our team uses 

Agile and Scrum processes. I have been attending daily standups and doing sprint 

planning using JIRA. Honestly, I just wanted to thank you for teaching such a 

useful real-world course. I went in day one and felt like I already knew how our 

software team was operating. I would have been extremely lost without my 

knowledge of Agile processes. 

I was recently interviewed for a Software Developer position at a company called 

CloudCheckr. They use the scrum process as well, and use similar technologies 

that we use in class. So first of all, I'd like to thank you for preparing me for the 

interview (they asked about SOLID, backlog refinement, etc.). 

 

I wanted to tell you what happened at the co-op interview that I just on. The 

technical person asked me a lot of questions about SOLID and the other design 

principles that we learned about in class. At the end of the interview, when 

everyone was saying goodbye to me, he pulled me aside and said that I had given 

the best answers to design questions of any student he ever interviewed. 

 



retrospective meeting the next term's backlog is filled with the improvements that we think can 

be implemented. Some of the new student complaints have to do with how many "moving parts" 

there are in the course. The students are guided through this by an instructor continually pointing 

out what exercises are due and what is coming up in the next one to two weeks. Many instructors 

have taken to displaying a slide listing this information as the students are coming into the 

classroom. With most submissions done through our course management system, the students 

can check the next due dates and setup that they receive notifications of deadlines by email. 

Keeping track of the "moving parts" is also a challenge for new instructors teaching the course. 

We have noticed now in the second term of full rollout of the course that there are many fewer 

questions coming from the instructors who are teaching this for the second time. Over the next 

term, we plan to develop a Trello list for the course coordinator and the instructors with one card 

for each course topic. The card would provide instructor guidance for before class, in class, and 

after class. There would be a checklist of tasks to complete. At the start of the term, an instructor 

copies the list and uses it to keep track of what needs to be done. We will continue to have a 

weekly coordination meeting with all the instructors as another mechanism for keeping everyone 

in sync with the course. 

One thing that is significantly more difficult with this version of the course is creating a new 

project. Because a guideline for the term project is that it involves very minimal user interface 

work, creating a new project is not simply writing a vision statement for it. The WebCheckers 

vision statement is the set of MVP features and enhancements along with a statement of the web 

technologies and software development process to use. Developing the client-side 

implementation of the WebCheckers gameplay and the documentation describing it was a very 

significant undertaking. A different project might have a simpler interface and we certainly can 

envision applications whose interface can be specified entirely with HTML templates and CSS 

which would make the client-side work much easier. Even so, if the guideline of no user 

interface work is maintained bringing on such a project is still significantly more effort than 

writing a one screen vision statement. 

Conclusions 

This course was developed through the summer and fall of 2016 and delivered for the first time 

as two pilot sections of Introduction to Software Engineering in the spring of 2017. It progressed 

to its full implementation in 13 course sections in fall 2017. There continue to be fixes and 

tweaks done to the material to improve it as we gain more experience with large groups of 

students and new instructors being brought up on the material. The evidence shows that we 

accomplished the goals that we set out for the redevelopment of this foundational software 

engineering course. The course eliminated the perennial complaints that students had with the 

course, emerged the students in significant discussion and practice of object-oriented design, and 

have the students practicing contemporary software development techniques using up-to-date 

tools. With the full rollout to all course sections, we have shown that the course has legs and is 

not just dependent on the energy of the two original instructors who took on this massive 

redevelopment project building the course from the ground up. 



References 

[1] Joint Task Force on Computing Curricula IEEE Computer Society/Association for 

Computing Machinery, "Software Engineering 2014 – Curriculum Guidelines for Undergraduate 

Degree Programs in Software Engineering", 2014. 

https://www.acm.org/binaries/content/assets/education/se2014.pdf 

[2] Joint Task Force on Computing Curricula Association for Computing Machinery 

(ACM)/IEEE Computer Society. Computer Science Curricula 2013: Curriculum Guidelines for 

Undergraduate Degree Programs in Computer Science, 2013. 

http://ai.stanford.edu/users/sahami/CS2013/final-draft/CS2013-final-report.pdf 

[3] Reichlmayr, T, "The agile approach in an undergraduate software engineering course 

project", Proceedings of the Frontiers in Education Conference, 2003. 

[4] Reichlmayr, T, "Enhancing the student project team experience with blended learning 

techniques", Proceedings of the Frontiers in Education Conference, 2005. 

[5] B. Bloom, "Taxonomy of Educational Objectives: The Classification of Educational Goals," 

Mackay, 1956. 

[6] http://www.se.rit.edu/~swen-261/ 

[7] http://epf.eclipse.org/wikis/openup/ 

[8] https://www.lynda.com/ 

[9] http://www.skillsoft.com/ 

[10] http://sparkjava.com/ 

[11] http://www.se.rit.edu/~swen-261/resources/resources.html 


