
Interdisciplinary Teaming as an Effective Method to Teach
Real-Time and Embedded Systems Courses

James R Vallino
Department of Software Engineering

Rochester Institute of Technology
Rochester, NY 14623, USA

+1.585.475.2991

J.Vallino@se.rit.edu

Roy S Czernikowski
Department of Computer Engineering

Rochester Institute of Technology
Rochester, NY 14623, USA

+1.585.475.5292

rsceec@rit.edu

ABSTRACT
The body of knowledge for engineering real-time and embedded
systems spans multiple computing disciplines. To effectively
prepare students to work in these areas requires coursework that
uses an interdisciplinary approach. This paper describes the
approach that Rochester Institute of Technology’s Departments of
Computer Engineering and Software Engineering developed.
This approach uses a cluster of three courses which cover a range
of topics in real-time and embedded systems engineering.
Students in each discipline take the courses, and teams of two,
with one student from each discipline, work on all course projects.
The paper describes the cluster of courses, their evolution over the
last five years, and the laboratory in which the classes are taught.
We present evaluation data to show the courses’ effectiveness
increasing student interest in real-time and embedded systems,
and helping them obtain employment in the area.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems] – real-
time and embedded systems, K.3.2 [Computers and Education]
Computer and Information Science Education – computer science
education.

General Terms
Design

Keywords
Real-time and embedded systems education, real-time and
embedded systems courses.

1. INTRODUCTION
The standard computing curricula concentrate primarily on
general-purpose desktop applications. The demands and
requirements for these systems are notably different than those for
real-time and embedded systems. Without coursework that
specifically addresses the special requirements for these systems,

students will not have the opportunity to gain the necessary skills
for engineering software in real-time and embedded systems.
Additionally, the current interdisciplinary nature of the real-time
and embedded systems profession intertwines intimate knowledge
of both the hardware and the software operating the components.
Many traditional courses have worked exclusively with small
microcontroller projects. This unfortunately does not reflect the
breadth of the current field. We set out to develop our approach so
that our course cluster and laboratory facilities encapsulated this
reality and provided our students with exposure to a broader range
of skills needed for entry-level engineering of real-time and
embedded systems.

We presented our original work including detailed course
objectives, course projects and initial evaluation of the first two
courses in [4, 16]. Since that work, we have made significant
changes to those two courses, and delivered the third course
several times. This paper provides background on our lab, and
describes the current syllabi for all the courses. We detail the
lessons we learned and improvements we made to the courses as
they evolved in the three years since our previous reporting. This
includes the complete development of the third course. The paper
concludes with our most recent evaluation data, and future
directions for our work. We also have information about these
courses, including password protected areas for faculty, on our
real-time and embedded systems website [15].

2. REAL-TIME AND EMBEDDED
SYSTEMS AT RIT
2.1 Background
In the computer engineering program at Rochester Institute of
Technology, senior projects often focus on real-time and
embedded systems, but there was no formal instruction in the
engineering of the software for these systems. The software
engineering program had an embedded systems application
domain comprising three courses: two standard operating systems
courses offered by computer science and a concurrent
programming course from computer engineering. None of these
courses directly addressed issues in developing real-time or
embedded software; they had been chosen because they were the
closest courses relevant to the domain.

We decided that the best way for us to address these shortcomings
in the real-time and embedded domain in both the computer
engineering and the software engineering curricula was to develop
an interdisciplinary approach. The presence of students from both
departments created a unique opportunity for synergy. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

computer engineering students possess significant knowledge of
electronics and control systems along with software development
skills at the lower-levels. The software engineering students
possess significant knowledge of how to engineer complex
software systems including the design and modeling of those
systems. They possess skills focused on the engineering of
software that are more fully developed than for a student in the
typical computer science program. Developing software for real-
time and embedded systems is where the skills of computer
engineering and software engineering students intersect.

It should be noted that all undergraduate engineering students at
Rochester Institute of Technology are required to have a year of
cooperative work experience before being awarded a
baccalaureate degree in the five year engineering programs. These
“coop” work periods are interspersed with academic quarters of
study in the last three years of study. The typical students in these
courses have had about nine months of work experience before
entering these courses. To date, we have offered the first two
courses in the sequence multiple times with some consistency; the
third course has been something of an ongoing experiment that
seems to be stabilizing.

2.2 Laboratory Hardware Facilities
The studio lab developed for these courses consists of twelve
student stations and an instructor’s station. The instructor’s
station is configured with classroom control software that enables
the capture, control and display of any of the student stations on
the classroom video projector. Each student station is positioned
to allow a pair of students to work together. Each station has a
modern personal computer for software development and a 486-
based single board computer as a target system. We are using a
Diamond Systems [5] pc-104 board with timers, A/D converters,
D/A converters, and digital I/O as our target systems.

Figure 1 above shows the basic lab work area for each student
group including the development workstation and the embedded
“purplebox” target system. To reduce the clutter in the student’s
work area we eliminated the second monitor often attached to the
target system. Students can view the output from the target system
in a number of ways. For text-based standard output the target
system development software provides a redirected console on the
development system. We also have the VGA output converted to
S-video and then fed into a USB S-video digitizer. The digitizer’s
software provides a picture-in-picture display. With the

converter’s zoom and panning capabilities students see the VGA
output. Finally, for projects that are generating VGA graphics
output the student can view the full resolution video through the
second input channel on the development station’s dual-input
monitor.

For the experiments involving programming a microcontroller,
each station, shown in Figure 2, is provided with a Motorola
68HC12 board, a custom designed interface board on which is
mounted the microcontroller board, a custom binary LED-switch
board for elementary binary input and output, a signal generator
and a power supply. The laboratory currently has two
oscilloscopes that are moved from station to station, as needed.

The last pieces of hardware to mention are primarily used in the
third course in the sequence. This course covers performance
engineering of real-time and embedded systems. To motivate the
need for system tuning of real-time systems we use the control of
physical systems. The two systems we choose for the laboratory
are from Quanser Systems [11]. We selected their inverted
pendulum and ball-and-beam systems. The last component of
equipment in the laboratory is a Digilent Spartan 3 FPGA board
[6]. Also in the third course, the students experiment with
hardware/software co-design using this FPGA board. Each
student station has one of these boards.

2.3 Laboratory Software Facilities
There is a set of software tools to complement the hardware in the
laboratory. The development stations are running the Windows
XP Professional operating system. The MGTEK MiniIDE [9]
supports assembly language programming on the 68HC12
microcontroller. We received a software grant from Wind River
Systems [17] allowing the use of VxWorks and the Tornado
development system. We are currently considering the use of the
QNX Neutrino operating system environment through a grant
from QNX Systems. These are the commercial real-time operating
systems that the students use in the laboratory. Matlab and
Simulink from The MathWorks [14] are used for simulating and
controlling the Quanser experiments. We also received software
grants from IBM [8] for the Rational Rose development suite and
Rational Rose Real-Time as UML modeling tools. Finally, the
students use Rhapsody from Telelogic [13] as a UML modeling

Figure 2. Microcontroller and peripherals

Figure 1. Basic lab station

tool. Rhapsody’s statechart modeling and code generation features
are used heavily in the second course in the sequence.

3. AN INTERDISCIPLINARY COURSE
CLUSTER
Three courses compose our cluster in real-time and embedded
systems. In July 2003, we started work on the laboratory and the
development of this course cluster. Each of these upper-division
undergraduate courses is four academic quarter credit hours and
meets for ten weeks of classes having a pair of two-hour studio
sessions per week. We offer each course once in our three-quarter
academic calendar.

Each of the courses is cross-listed in computer engineering, and
software engineering. The course curricula are delivered in a
studio-lab environment where we mix lecture material with hands-
on exercises. Registration is initially controlled with the goal of
having an even mix between students from the two programs. To
the extent possible, we ensure that all project teams have a
member from both computer engineering and software
engineering. Typically, we have not had a difference of more than
two between the student registrations in the two disciplines.
Depending on the course project, this is handled by creating one
or two teams of three, or having one team of students from a
single discipline. For some projects, we will provide additional
assistance to a non-interdisciplinary team. These courses are also
available to students in the computer science and electrical
engineering programs, but we have had only a small number of
these students registering in the courses.

3.1 Real-Time and Embedded Systems
The first course in this elective sequence is titled Real-Time and
Embedded Systems. It presents a general road map of real-time
and embedded systems. It introduces a representative family of
microcontrollers that exemplify unique positive features as well as
limitations of microcontrollers in embedded and real-time
systems. These microcontrollers are used as external, independent
performance monitors of more complex real-time systems targeted
on more robust platforms. The majority of this course presents
material on a commercial real-time operating system (RTOS) and
using it for programming projects on development systems and
embedded target systems. Some fundamental material on real-time
operating systems is also presented. Example topics include:
scheduling algorithms, priority inversion, and configuration of a
real-time operating system for a target platform and host
development system. The textbook for the course is Real-Time
Systems and Software by Shaw [12]. This course requires as a
prerequisite either a standard Operating Systems course or the
software engineering program’s course Principles of Concurrent
Software Systems. The project work spans the range from
microcontroller assembly programming through to application
development under a commercial real-time operating system. The
topics covered by the Embedded and Real-Time Systems course
include:

• Introduction to Real-Time and Embedded Systems

• Microcontrollers

• Software Architectures for Real-Time Operating Systems

• Requirements and Design Specifications

• Decision Tables and Finite State Machines

• Scheduling in Real-Time Systems

• Programming for a commercial real-time operating system

• Development for Embedded Target Systems

• Language Support for Real-Time

• Real-Time and Embedded Systems Taxonomy

• Safety Critical Systems.

The project assignments for this course are:

Microcontroller programming: Students program the 68HC12
microcontroller to act as an interval timer. This assembly
language program measures the inter-arrival time of a series of
1000 pulses using the hardware timers available on the processor.
Using these timers the students see how to measure with
microsecond resolution.

Real-Time Operating System multi-tasking primitives: The main
goal for this project is to have the students become familiar with
programming under a commercial real-time operating system.
Using VxWorks as an example of a commercial real-time
operating system, students learn how to program using its
concurrency and synchronization primitives. The team must
implement a concurrent system such as a transit simulation or an
automated factory. The programming had been done within a
simulated target system running on the development station.

Real-Time Operating System performance measurements: There
are two smaller projects that fall into this category and are run on
the target systems. Both projects make use of the microcontroller
project as a timing device. In the first project, the students learn
how to schedule a periodic task under VxWorks. This task is
toggling a bit on the printer port. The microcontroller timer
measures the inter-arrival time and jitter of these periodic pulses.
The second project measures the interrupt response time of the
system by having the microcontroller measure the time between
generating an interrupt signal to the target and receiving a
response from the target.

Final project: There is a final programming project. This project
is usually student motivated with each team thinking of a project.
We have seen implementations of user-level drivers for the
devices on the target system, an ultrasound distance measurement,
simple video games, and a digital oscilloscope.

3.2 Modeling of Real-Time Systems
The second course is titled Modeling of Real-Time Systems. The
course takes an engineering approach to the design of these
systems by describing the system characteristics via UML models
before beginning implementation. This course has the same
operating systems course or concurrent systems course
prerequisite. Students who take the first course prior to this
course have a small advantage, but we have worked to provide
sufficient resource materials for students who have not taken it.

The textbook for the course is Doing Hard Time by Douglass [7].
The course covers the following topics:

• Introduction to Modeling of Real-Time Systems

• Basic Concepts of Real-Time Systems

• Basic Concepts of Safety-Critical Systems

• Use case analysis for real-time systems

• Structural object analysis for real-time systems

• Behavioral Analysis using statecharts

• Design patterns for real-time and safety-critical systems

• Threading and Schedulability

• Real-Time Frameworks

This course has the strongest software engineering emphasis.
Initially, the projects progressed through phases in the standard
waterfall process model with emphasis on analysis and design of
the software system. For the software engineering students, this is
continued modeling practice using the UML, similar to what they
do in all the courses in their software engineering program. The
application areas chosen for the projects, i.e. embedded systems,
are significantly different from the typical desktop and GUI-over-
database projects that they see in their other courses. In this
course, the software engineering students took the lead on most
projects. Many upper-division computer engineering students
have not done any modeling in the UML since their second-year
software engineering course.

The strong software engineering emphasis in this course has
caused some problems with maintaining computer engineering
student enrollment. We do not want to have the situation where
the computer engineering students feel that their expertise is not
required for most of the projects in this course. With each
offering of this course, we have worked to shift the content more
toward the computer engineering program. The first course
project was a requirements analysis and design assignment. The
students received a copy of the user manual for a consumer
device. The devices we used included a blood pressure monitor,
pedometer, and combined binocular/digital camera. Using the
manual, the students identified the actors and use case
requirements for the product, and then did a class-level design for
an object-oriented implementation of the system. No
implementation was done in this project. Our experience is that
doing software only requirements moved too far from the
computer engineers’ expertise. In a recent offering of the course,
we dropped the class-level design from this project. We want to
keep some aspect of working with requirements because it is
crucial to get the requirements correct on any project [2], but this
project will require further modifications to bring it more in line
with the computer engineering students’ interests.

In our experience, the computer science, computer engineering,
and software engineering students all gravitate to static class-level
modeling with ease. Most of the students feel comfortable
creating a design and drawing a UML class structure diagram.
Capturing the dynamic behavior of the system is much more
difficult for the students. Many real-time and embedded systems
have state-based behavior. A significant part of this course
discusses UML statecharts as a mechanism for capturing dynamic
system behavior.

The second project is a design and implementation project with a
major emphasis on manual implementation of the statechart that

describes the system behavior. We have used a cyclometer, and a
chilled water controller for this project. With the last offering of
the course, this project has moved from a standalone application
to an application running on our target systems under an RTOS.
The program must interface with the FPGA board which provides
access to it 7-segment displays, LEDs, buttons and switches. The
FPGA development board acts as the user interface controller.

The Modeling course makes extensive use of on-line discussion
areas. This is a place where we use “low-stakes” grading of
writing assignments that do not carry much course credit.
Through multiple offerings of this course, we have also increased
the number of in-class exercises that students do. These help
reinforce the lecture material that is covered.

3.3 Performance Engineering of Real-Time
and Embedded Systems
The third course is titled Performance Engineering of Real-Time
and Embedded Systems. The objectives for this course are for
students to explore aspects of real-time and embedded systems
with an emphasis on measuring their performance. The
Performance Engineering course has the Real-Time and
Embedded Systems course as a prerequisite. Students without
that course who have taken operating systems or concurrent
systems have been successful in this course. Based on that
experience, we are considering changing the course prerequisites
to be the same as for the other two courses. Topics covered by
this course include:

• Performance measurements for real-time and embedded
systems

• Profiling of program execution in embedded systems

• Exploration of linear control systems

• Interpretation of linear control parameters

• Hardware system description languages

• Hardware/software co-design

The list above is an unusual combination of topics that is not
covered in any single textbook. We cover the course topics with
class discussions and exercises, handouts, and references to on-
line resources for the students. The course splits approximately in
half between real-time and embedded topics. We have offered
this course three times, and with each offering we have made
major modifications trying to achieve the course’s objectives. At
this point, most of the material from the course’s first offering has
been replaced with new class material and projects.

The real-time part of the course comes first in the syllabus. Real-
time scheduling algorithms are discussed in detail in the first
course and briefly in the Modeling course. In this third class, the
discussion and exercises review real-time scheduler theory and
algorithms including rate-monotonic, earliest deadline first, and
least slack time. For their first project, students design and
implement a testbed in which they can experiment with several
scheduling algorithms. The testbed executes on our target
machines running under the real-time operating system (RTOS)
environment. We have a class exercise which introduces the
RTOS environment and a paper and pencil exercise determining
task execution timing for different scheduling algorithms. The

students implement their scheduler outside of the operating
system kernel because the learning curve for replacing the
RTOS’s scheduler would be too steep. We have an extensive
class discussion about how to structure their testbed to
accommodate both fixed priority and dynamic priority scheduling
algorithms. This requires careful consideration of the testbed’s
synchronization mechanism. The students design experiments to
test the schedulability limits for several scheduling algorithms
comparing their results to the theoretic limits.

The next real-time systems topic is a basic discussion of control
systems. The computer engineering students have seen
Z-transforms, though only a small number have taken a digital
controls course. The software engineering students have none of
that background. Obviously, our coverage of real-time control
cannot be from a deep control engineering perspective. Instead,
we try to provide an intuitive perspective, and have students
concentrate on the issues surrounding the implementation of
linear control algorithms. A lecture introduces Z-transform
notation and students work on a class exercise to implement a
simple transform. This is a new experience even for the computer
engineers who had a digital controls course which only dealt with
the transforms as mathematical entities within Matlab. The
project requires students to implement a standard proportional-
integral-derivative (PID) controller on the target systems under
the RTOS. The plant they are controlling is a simulation running
on the development workstation using the Control System Plant
Simulator (CSPS) [3]. We have extensive class discussion about
how to structure their controller including issues of the timing of
analog input and output conversions, and identification of control
algorithm values which can be calculated prior to the next time
interval. The project requires students to measure controller
performance and tune the PID parameters for best performance
against the project’s stated control goals.

The embedded systems part of the course starts with an
introductory lecture on VHDL. A class exercise gets students
familiar with the FPGA development environment and walks
through a simple VHDL development project. All students,
including the software engineers who have done no prior VHDL
work, have an individual VHDL development exercise to
complete. This is a simple exercise that should take the computer
engineering students, who have experience with VHDL, no more
than a few hours to complete. We intend the remaining embedded
systems work to concentrate on hardware-software co-design, and
this is the area where we have had the most difficulty achieving
our conceptual goal for this course.

In the first course offering, the students performed a set of JPEG
image compressions, first using an all-software approach on the
target system, and then off-loading some of the computations to
an attached FPGA board. This project requires the strong VHDL
experience of the computer engineering students. The image data
exchange was through the parallel ports on both the target system
and the FPGA development board. We intended that students
would make a hardware-software co-design tradeoff by placing
more device control functionality in the FPGA. At each step, the
students would measure the change in system performance as the
boundary between hardware and software was moved. It became
clear that the largest challenge was getting reliable
communication between the target system and the FPGA.

Workarounds for unreliable communication overwhelmed gains
made by the hardware implementation of algorithm elements.

We next tried to incorporate hardware-software co-design tools
such as System C and Impulse C. We chose Impulse C and
received significant support from the tool vendor during the
course. The problem was again the communication between the
target and FPGA, this time in the form of no Impulse C board
support for the parallel port connection that we wanted to use.
We asked the students to implement the necessary board support.
Even with the extensive vendor support we received, partway
through this exercise we realized that it was too daunting a
challenge for the students. We quickly assessed the situation, and
offered options to the students. One group of four students
continued through the remainder of the term to work in the
Impulse C environment. Another pair continued working on the
project similar to the initial course offering, i.e. outside of the
Impulse C environment. The remainder of the students moved
onto other projects that we hurriedly created.

We learned two things from these failed attempts at achieving our
course concept for hardware-software co-design. First, we needed
to eliminate the parallel port’s loose coupling between the
software processor and the FPGA hardware implementation of
algorithm elements. The industry trend, and what is supported by
the hardware-software co-design tool vendors, is to embed
processor cores in the FPGA. These processors will execute the
algorithm elements that remain in software. Second, the students
were very motivated to work on projects that were open-ended
and where they had some choice in the project details and scope.

For the third offering of this course, we created an undergraduate
research-style project which ran through the last four weeks of the
term. We defined several topic areas all of which had open-ended
project statements that would need further defining. Each student
was given an opportunity to state a preference for a project area.
The instructor created the final team pairs based on these
preferences. Because each project was open-ended, the team’s
initial task was to define the exact scope, goals, and milestones for
their project. While each topic area touched on material covered
in class, all the projects had areas that required the students to do
extensive investigation beyond that coverage. A project might
entail one or more investigations, such as, learning: how to work
in a different development environment, how to model a physical
system, or how to work with material done by a previous project
team. We describe the topic areas next, and include information
about what teams accomplished.

Control of physical devices: one student pair was assigned to the
Quanser inverted pendulum, and another team to the ball-and-
beam system. The project goal was to control these physical
devices through the Quanser-supplied interface board, but not
through the high-level Simulink interface that Quanser used. The
two teams decided to use different approaches. The ball and beam
team started with a previous student’s project work which used
the RTX Real-time Extension for Control of Windows [1]. The
team calibrated the sensors and motors, and developed two
different control algorithms. The inverted pendulum team
installed QNX Neutrino to develop an interface to the sensors and
motors, and control the device. Their work with QNX Neutrino
will be very useful when we move the entire lab to that RTOS.

PicoBlaze embedded processor: three team pairs chose to explore
the PicoBlaze processor core. This low block-count core can be
embedded in our small Spartan 3 FPGA devices. Two teams
developed an interface to a magnetic card reader, and one team
measured distances with two ultrasound distance sensors. The
magnetic card reader teams needed to do a lot of research work to
understand how to interpret data from the card strip. Neither team
was able to reliably read and interpret data, even when one team’s
member went to the security people at his job and asked them to
code several cards with known data for testing purposes. The
ultrasound team built an accurate distance measuring peripheral.
These projects provided a level of hardware-software co-design
experience using embedded processor cores which is an important
direction to achieve our objectives for this course.

Hardware-Software Co-Design: As discussed above, our previous
attempts at hardware-software co-design, which used a parallel
port connection for loose coupling of the software processor and
the hardware elements of the algorithm, had mixed success due to
problems with communications. One student team took on the
challenge to fix these communication problems. They were able
to increase the error-free byte transfer rate through the parallel
port by a factor of almost 10, and built a framework in the FPGA
for easy switching between several different hardware
implementations of an algorithm. This will be an improved base
to test performance enhancements for a co-design algorithm using
the hardware that we currently have in the laboratory.

Real-Time System Simulation and Control: This project asked a
team to select a physical system that they could model using the
CSPS system [3]. The team would need to provide a graphical
user interface for the model simulation which would run on the
development station. The team would implement a controller for
the plant on the target systems. We could then use this work as
the real-time control project in future course offerings.
Unfortunately, no students selected to work in this topic area.

Microsoft Robotics Studio: This project area asked a team to
explore the capabilities of Microsoft’s Robotics Studio [10] as a
simulation engine for physical systems. The Robotics Studio has
a full physics engine embedded in it. An interface to our data
acquisition system could provide a bridge between the physics
engine and a target system controller. One team selected this
project. They ran into a number of complications just getting the
Robotics Studio to run on a development workstation. Once past
those problems, the team successfully modeled an inverted
pendulum system with characteristics corresponding to our
Quanser inverted pendulum, and built a rudimentary controller for
it. The team did not have time to do a careful validation of the
operation of their simulation to that of the physical device. This
work shows promise for future use in the lab if we can overcome
many of the installation problems that the team encountered.

We are very happy with the results the students obtained when
working on their final undergraduate research projects. This was
a win-win project for students and faculty. The students had some
control over the choice of their project for the last four weeks of
the term. The students were motivated to do the extra
investigation work, and did not complain about the vague project
requirements. There are two aspects of the assignment that we
feel were essential to engage the students. First, the students
defined their own project direction under the guidance and final
approval of the course instructor. This gave them “buy-in” to the

project. Second, we made it clear that as a “research” project it
was not known exactly what could be accomplished in the
timeframe given for the project. Grading was not going to be
strictly based on achievement of specific goals. Each team did
specify initial goals for their project, and could still receive a good
grade if those goals were not achieved provided that the team
demonstrated “due diligence” working on the project. To monitor
project work on a weekly basis, each student tracked his or her
time on the project along with the tasks accomplished. During
class time, each team gave a weekly 5 minute project status
presentation to the class describing progress made, problems
encountered, and the expected accomplishments for the upcoming
week. In addition, the instructor held a private 15 minute meeting
with each team once a week to discuss further details of the
project progress. It was in these meetings that we were able to
assess the due diligence of the team and provide feedback.

The win aspect for the faculty is twofold. By purposely stating the
projects as open-ended, we escape the problem, often seen with
new projects, of having to guess a reasonable project scope, and
provide associated deliverable expectations. The results achieved
by teams that met the due diligence requirement show us
reasonable expectations. We can then use that information to
rework a project into a more traditional close-ended form.
Secondly, with judicious selection of the topic areas, we placed
some of the burden for exploring new areas on the students. With
permission to use their work, we can let future teams build upon it
to develop robust project frameworks that we faculty do not have
the time to implement ourselves.

4. EVALUATION
We have evaluated the effect of our course cluster using student
surveys. Increasing student interest in real-time and embedded
systems, and aiding students in finding employment in the area
were two goals for our work. The results of all our surveys to-
date have consistently indicated success in meeting these goals.
We presented evaluation data from the initial offerings of these
courses in [4, 16].

As is the case in many organizations, crossing organizational
boundaries can create unique problems. We have had our share of
them running these interdisciplinary courses. RIT’s departments
gain credit-hours-generated credit based on the course number.
Independent of whether a software engineering or computer
engineering faculty member is teaching the course, credit-hours-
generated are split between both departments because of the
cross-listed numbers. Our department chairs have assumed that
this evens out since we have also balanced the responsibility for
teaching the courses between the two departments. While the
aggregate number of students registered for each course is
sufficient, because the courses are cross-listed under multiple
numbers, individually, they often set off the course audit warnings
for low enrollment in the individual courses. Our department
chairs have had to provide explanations for allowing the low
enrollments. Finally, it took us a bit of time to get the scheduling
coordinated between the departments in separate colleges so that
in each term all sections of the course were offered at the same
time, in the same room, and with the correct registration limits.
Similar coordination problems existed for scheduling concurrent
final exams for the courses.

The latest survey has data from fifteen students who took at least
one of the three courses. This data represents about a 50%
response rate from the students in each course during the 2007-
2008 academic year. The numbers of students taking the courses
in this cluster were: all three courses – 2; two courses – 6; only
one course – 7. Six computer engineering and nine software
engineering students responded to the survey. The courses helped
to increase student interest in real-time and embedded systems
with 87% of the respondents replying Agree or Strongly Agree to
the question “These courses increased my interest in real-time and
embedded systems.” A smaller percentage, 47%, Agree or
Strongly Agree that they plan to seek employment in the real-time
or embedded systems area. Six students, 40%, Agree or Strongly
Agree that taking one of the courses in the cluster assisted the
student in getting a co-op or full time position.

We were also interested in the students’ perception of the three
individual courses, and, particularly, whether the students’ found
value from the interdisciplinary teaming. These most recent
results are shown in Table 1 below. The table rows show data for
individual questions asked about each of the courses which are
organized in the columns. Each data entry is the number of
students who responded Agree or Strongly Agree to the question.

Table 1. Results of survey of student perceptions

 R-T&E
Sys.

Modeling Perf.
Eng.

of students 8 8 9

Amount learned was worth
the time

7 5 8

Recommend to a friend 8 6 9

Adequate preparation 8 7 8

Benefit from teaming 5 5 8

This data shows that the student perception of these courses is
positive particularly for the Real-Time and Embedded Systems,
and Performance Engineering of Real-Time and Embedded
Systems courses. The first course has been well-received by the
students from its inception. As described previously, we have
made significant changes to the third course to improve the ties of
its content to the real-time and embedded systems area. The
students particularly liked the final “research” project which
allowed them to choose their individual topic area and gave a
wide range of flexibility in the direction for each project.

The results for Modeling of Real-Time Systems show some
weakness in our opinion. We attribute this to the heavy software
engineering emphasis of the modeling aspects of the course which
the computer engineering students view as too abstract. Even
some software engineering students expressed dissatisfaction
because too much was a repeat of modeling that they do in several
other software engineering courses. We believe that this indicates
the need to make modifications to the basic content, and the
nature of the projects. Our move to implement the second project
on the target systems running under the real-time operating system

was a step in the right direction. We present other ideas for this
course in the next section.

The students were almost unanimously of the opinion that the
interdisciplinary teams were beneficial in the Performance
Engineering course. We attribute that to the very open-ended
nature of the project work, particularly the final project which had
topic areas that required thinking across the hardware-software
boundary. For the first introductory course and the Modeling
course, a majority of students still Agree or Strongly Agree that
the interdisciplinary teaming is beneficial. The negative student
comments that we received center on spending too much time
instructing a partner in the other discipline. The direction of the
instruction depends on whether the project has a stronger software
engineering or computer engineering content. Our retort is that
when you assist someone else’s learning of a topic it helps
solidify your own learning of the material. This does not sway
those who may be focused on the amount of work that must be
done to get a particular grade. It remains a problem to find
projects for all three courses that provide an equal challenge to
students from each discipline, and benefit from our
interdisciplinary teaming.

5. FUTURE DIRECTIONS
There are two changes that we plan to make in the laboratory’s
hardware and software infrastructure. A major change will be
switching the principal real-time operating system from the Wind
River Systems’ VxWorks to QNX Neutrino. We made several
unsuccessful attempts to create a VxWorks board support package
for our new target systems with Pentium-based processor boards.
Recently, QNX Software Systems released QNX and their entire
development suite in open licensing. The better support provided
for QNX on our Diamond Systems targets made it easier to get
QNX running on our new processor boards. We now need to
retarget/redevelop all our course exercises and projects to this new
operating systems environment. The second change we anticipate
is moving to new development boards with larger FPGA devices.

There are a number of areas where we feel these courses need
improvement. We feel that we got the first course with the right
content early on, and it has seen the fewest changes. For now, our
own plans for modification are to introduce another physical
device control project, such as, controlling the position of a model
airplane servo motor with pulse-width modulation.

The Modeling of Real-Time Systems course continues to suffer
from too strong an emphasis on the more abstract software
engineering modeling techniques. Requirements analysis is one
topic that computer engineering students have identified as too
abstract. The content of this course still needs to move closer to
the hardware. We plan to remove discussion of actors and use
cases for requirements analysis. We think that substituting
discussion and practice in the specification of specific, well-
formed requirements statements for real-time systems will better
serve both the software engineering and computer engineering
students. Currently, the requirements project uses a consumer
device. We think that this project will have more meaning for the
students, if we connect the work to the design and implementation
second project. Removing some discussion of requirements
analysis will provide time for more discussion of real-time design
patterns which are very lightly covered now. The third project,
which uses the code-generation capabilities of Rhapsody, was

executed as a small standalone application. A four-function
calculator and a garage door opener are two applications that we
have used in the past. We will consider using the same
application through the entire term by having the students
autocode the application that was used for the requirements, and
design/implementation projects.

The Performance Engineering course has undergone the most
significant changes from its initial offering. With our latest
successes, we are more willing to believe that the concept of
splitting the course into two parts, real-time control of physical
systems and hardware-software co-design, is sound. However, the
course has not yet fully realized that concept. Before adopting a
widespread physical systems control project, we need to develop
simulations of the inverted pendulum, and ball-and-beam systems.
This will allow students to test their controllers in simulation
before moving to the physical systems, which are resource
constrained.

For the hardware-software co-design aspect of the Performance
Engineering course, we also must take major steps to move
forward. One student project from last year did solve the
problems that we had in communicating via the parallel port
between a target system and the Spartan 3 FPGA board. This
work should allow a hardware-software co-design project
enabling migration of some software components into VHDL
implementations on the FPGA. Our goal is still to use a tool such
as Impulse C to do high-level algorithm development in C
followed by automatic VHDL generation for the components
migrated to hardware. We would, however, abandon our initial
approach of loosely coupling the software processor and hardware
components, in favor of a processor core embedded in the FPGA
alongside the components migrated to hardware. This is the trend
in industry, and the approach that the design tool vendors support.
Our PicoBlaze final projects gave us positive results from students
working with this approach, but to move forward we need to
acquire development boards with larger FPGAs that can hold
more powerful embedded processor cores.

The final project in the Performance Engineering course was well-
received by the students, and we will continue these open-ended
undergraduate research style projects in future course offerings.
We want to improve the projects’ focus by reducing the number
of topic areas from which students select, and placing additional
constraints on some areas to ensure that the new projects build on
results of previous work.

This interdisciplinary technique for course delivery has worked so
well that we hope to apply it in areas other than real-time and
embedded systems. The next area under consideration is an
interdisciplinary course cluster in cryptography. This cluster
would have three courses and involve the computer engineering,
computer science, and software engineering programs. The first
course would be a modified existing introductory cryptography
course offered by computer science. A second course would
concentrate on secure design and implementation of software
systems. The third course in the cluster would study hardware-
software co-design techniques. These last two courses are new,

and would use cryptographic algorithms as the motivation for all
course exercises and projects. As we do in our real-time and
embedded systems cluster, we would control registration to
balance the number of software- and hardware-oriented students.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. DUE-0311269. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

7. REFERENCES
[1] Ardence. RTX - Real-time Extension for Control of Windows.
http://www.ardence.com/embedded/products.aspx?id=70.
Accessed 12 July 2008.
[2] Brooks, F. P., Jr. No Silver Bullet - Essense and Accident.
Addison-Wesley, City, 1995.
[3] Chandler, D. and Vallino, J. Control System Plant Simulator:
A Framework for Hardware-In-The-Loop Simulation. In
Proceedings of the ASEE 2008 Annual Conference (Pittsburgh,
PA, June, 2008).
[4] Czernikowski, R. S. and Vallino, J. R. Embedded systems
courses at RIT. In Proceedings of the 2005 Workshop on
Computer Architecture Education: held in conjunction with the
32nd International Symposium on Computer Architecture
(Madison, Wisconsin, 2005). ACM.
[5] Diamond Systems. http://www.diamondsystems.com.
[6] Digilent. http://www.digilentinc.com.
[7] Douglass, B. P. Doing Hard Time - Developing Real-Time
Systems with UML, Objects, Frameworks, and Patterns. Addison
Wesley, Reading, 1999.
[8] IBM Rational Software. http://www-
306.ibm.com/software/rational/.
[9] MGTEK. http://www.mgtwk.com/miniide.
[10] Microsoft Corporation. Microsoft Robotics Developer
Center. http://msdn.microsoft.com/en-us/robotics/default.aspx.
Accessed 11 July 2008.
[11] Quanser Systems. http://www.quanser.com.
[12] Shaw, A. C. Real-Time Systems and Software. John Wiley &
Sons, New York, 2001.
[13] Telelogic. Telelogic Rhapsody.
http://www.telelogic.com/products/rhapsody/index.cfm.
[14] The Math Works. http://www.mathworks.com.
[15] Vallino, J. Real-Time and Embedded Systems Course
Sequence. http://www.se.rit.edu/~rtembed. Accessed 11 July
2008.
[16] Vallino, J. R. and Czernikowski, R. S. Thinking inside the
box: a multi-disciplinary real-time and embedded systems course
sequence. In Proceedings of the Frontiers in Education
Conference (Indianapolis, IN, October, 2005). FIE '05. T3G-12-
17.
[17] Wind River Systems. http://www.windriver.com.

