RIT software engineering SENior Project
first page 1
2 even page
IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, vol. #, no. #, MMMMMMMM 1996

AUTHOR: TITLE
odd page 3

[image: image1.emf]
[image: image2.emf]
Portal Technology Feasibility Study
Jonathan J. Ferry, Christopher Helmeset, Gregory J. McGraw and Jonathan M. Peffer
Abstract — The goal of this paper is to provide an overview of the RIT / Excellus Senior Design Project: Portal Technology Feasibility Study. This project aims to address key areas of concern for a proposed Portal-based presentation layer in Excellus’s anticipated new information system, jTIGRESS.
Index Terms— Distributed/Internet based software engineering tools and techniques, Maintainability, Software engineering for Internet projects, Software process models
—————————— (——————————

1
Introduction
E

XCELLUS BlueCross BlueShield, headquartered in Rochester, NY, is part of a $4 billion family of companies that finance and deliver health care services across upstate New York and long-term care insurance nationwide.
Currently, Excellus employs over 450 customer service representatives who are responsible for handling approximately 30,000 thousand calls a day from some of its 2.1 million subscribers. All representatives operate on computers equipped with TIGRESS, a Visual Basic 6 (VB6) application developed by Excellus, to retrieve customer information and manage subscriber transactions. The current application has adequate functionality and excellent performance, however with their growing customer base and increasingly distributed centers of operation, the limitations of the technology in terms of maintainability, extensibility, and reusability are becoming apparent. The proposed plan for replacing TIGRESS is an architecture based on JAVA/J2EE technology, with an expressed interest in an IBM WebSphere Portal-based solution. This new application, jTIGRESS, could be used internally for claims processing, membership and billing functions, customer service, and externally via the Web for Excellus subscribers.

The goal of the RIT and Excellus senior design partnership is to research and provide answers to a group of questions regarding the capabilities and limitations of IBM WebSphere Portal technology. This research will influence the design of jTIGRESS.

2
Project Requirements
The project requirements posed to us were non-functional in nature. Our requirements, which will be referred to as objectives, were to research the following areas of Portal-based technology: Interface design, Application Design, Portlet Families, and general WebSphere capabilities and limitations. Each objective is prioritized and explained in further detail below:
1. Application Design was a concern in reference to the extent a Portal-based application can be designed and implemented. The specific area of Application design research is inter-portlet communication.
2. Enterprise-Wide authentication research focused primarily on Single Sign-On (SSO) and Lightweight Directory Access Protocol (LDAP).
3. The family of portlets research concerns regarded the ability of a Portal-based solution to leverage interface and logic reuse including the constraints/limitations, capabilities, and effort to develop.
4. Interface design explores the extent to which Portal interfaces can emulate the look and feel of popular PC interfaces. In addition there was a focus on the capabilities and limitations of customization and personalization.
In addition to the research conducted in these general areas, there was an overwhelming concern regarding possible performance issues that may arise from a web-based solution. While this was a concern, the resources available limited our investigation regarding this matter. We were also to address additional issues that were not specific objectives. These were explored and to be discussed, since it was believed they might be of concern to Excellus.

3
Research and Development Process
The process for the RIT Excellus Portal Technology Feasibility Study consisted of two phases using an Agile approach to software development. These phases were each 10 weeks long and took us to the completion of our undergraduate degree in Software Engineering. The following is a high level description of the process.
3.1 Phase 1 (Winter Quarter)

Phase one was composed of configuring technical resources, research, and development. Research consisted of two concurrent threads: Portal research focused on acquiring a comprehensive understanding of the JAVA Portal JSR168 standard, IBM WebSphere research relates to the server and development environments that were used in prototyping. This initial research resulted in the development of documentation for each subject, which guided the initial design of the prototype. The goal of the initial prototype was to develop a proof-of-concept of Portal-based technology using IBM WebSphere. Phase one metrics were limited to tracking the initial scheduled tasks and the actual dates. This was done so that the major areas of effort in initial research could be identified.
3.2 Phase 2 (Spring Quarter)

Phase two of the process involved an Agile process based on the prototyping lifecycle model. An initial set of objectives (requirements) from the customer were used to guide the design of the prototype which was followed by implementation. After the prototype was implemented, it was then reviewed against the objectives (success criteria) and delivered to Excellus for further review and feedback along with documentation on our findings (both high level and technical) through the iteration. Another iteration commenced and followed a similar approach as the previous, with the exception of feedback from Excellus, which altered the objectives. This process continued throughout the 10 weeks of phase two until the initial project objectives were met, giving Excellus answers to their questions on Portal technology. Measurements for phase two included time taken to research each objective and lines of code per Portlet application. These metrics will be used by Excellus when planning their Portal based jTIGRESS solution and the resources required for development.

4
Planning
The initial plan for phase one consisted of three major tasks or milestones: software/hardware installation and configuration, research, and prototype development. Unfortunately, software/hardware installation and configuration activities ran behind the initially scheduled time due to technical difficulties. This latency did not affect research activities, as the team was able to begin such tasks while concurrently troubleshooting software/hardware installations and configurations. Key deliverables for phase one include the preliminary technology feasibility report and initial proof-of-concept prototype (including source code). These were simultaneously delivered on time on February 15, 2004.

The initial plan for phase two was to have three bi-weekly iteration milestones. During the first week it became apparent that the lengthy elicitation process caused the first iteration to be pushed back a week, thus pushing back all other iterations. After the plan was rescheduled, the new milestones were completed on schedule. Phase two deliverables include the finalized technology feasibility report, which is an expanded version of the preliminary technology feasibility report, the final prototype (including source code), and a findings workshop for the Excellus engineers and architects. These are on schedule and to be delivered May 20, 2004.

4
Research Results
Given the aforementioned objectives, we were able to guide our research towards the following aspects of Portlet and WebSphere technology: Inter-Portlet communication, Single Sign-On (SSO), Customization and Personalization, and Lightweight Directory Access Protocol (LDAP) support within WebSphere.

4.1 Inter-Portlet Communication

Essentially, there are four different types of portlets: ones that do not communicate with others at all, source portlets - portlets that only send information to other portlets (explicitly or by broadcast), target portlets – portlets that only receive information and update themselves based on other portlets, source and target portlets – portlets that both send and receive data. Implementing a combination of source and target portlets in a Portlet application allows data transfer capabilities between Portlets. In the end, the data transfer capabilities offered by portal based applications are very similar to that of any other software application with the exception that it is being passed from the client to the server, via the internet. One important caviat that we found was that Portlet messages cannot be broadcasted across pages, meaning Portlets on other pages will not receive Portlet event messages from another page. Though some may not view this as a limitation, it is certainly a constraint, which must be considered when designing Portlet based applications.
Additional findings regarding the capabilities of Inter-Portlet communication were found to be more encompassing than previously thought. WebSphere provides further Inter-Portlet communication methods through WebSphere Click-to-Action (C2A) Portlets, and extensions, such as People Service. C2A Portlets, now referred to as Cooperative Portlets, provide communication between Portlets based on a set of defined rules. Only a small amount of documentation regarding this subject could be found during our research phase, but we do suggest further analysis of the technology. Extensions such as People Service provide specific, predefined capabilities through the use of portlets. For example, People Service provides the capability of online awareness of users who are logged into the system or currently using a given Portlet.

4.1 Single Sign-On (SSO)
SSO in Portal Server has two levels. First, the credential vault service encapsulates the functionality of SSO for the portlet writer in an object provided by the service. Second, the portlet writer has to utilize the SSO functions and manage their own connections and authentication to the back end applications.

WebSphere provides two models of authentication, Web SSO and Extended. Web SSO allows a user to log-in to one application, the application then generates a token with the aid of some LTPA authentication proxy. Extended SSO is where the credentials for users to access different systems are stored in the credential vault.
Extended SSO is most likely the preferable solution for Excellus, as their applications do not reside within the same security domain. As we have come to understand there are applications that may be running in different cities that may need to be accessed and these applications would be in an entirely different security domain. If desired, the security model can be designed to eliminate redundant credentials for different users. The necessary credentials for the user can be in one location to access the portlets. This would require the restriction of certain users from certain portlets if they were not allowed to view the returning data from the back end application.
The functionality of SSO technology was found to be best suited for environments that permit secure access through a defined mechanism, such as, but not limited to, Digest Authentication. Environments that require the manual entry of authenticating credentials, although supported, must be implemented according to the SSO specification, as opposed to the support provided by WebSphere SSO wizards.

4.3 Customization and Personalization

Customization and Personalization are capable of handling both the Look and Feel, and Family of Portlets objectives, respectively. Customization provides the capability of supporting multiple user configurations, such as, Internet Explorer and Netscape, as well as supporting localization issues. In conjunction with the other aspects of Customization, the Look and Feel objective is accomplished by configuring Themes and Skins for Pages and Portlets, respectively.

Themes allow a Website designer to provide an overall visual consistency and affect the navigational structure, banner, colors and fonts, available portlet skins, and other visual elements. This is accomplished by creating JSP files, style sheets, and images. Every theme must define a default skin to associate with the portlets displayed. Through the use of Themes, we feel that Excellus will be able to provide external and internal users with an appropriate look and feel.

As previously mentioned, Skins are used for defining the appearance of a Portlet. Since a place has an associated theme and themes define a set of available Skins, each page may use one global skin for each portlet displayed or a different Skin for each portlet. Skins affect the look of a portlet by defining the frame around it. Skins generally are defined by a set of JSP files.

While Personalization is marketed as a presentation layer product, we discovered that, while it does allow control over the content displayed, it also allows the reuse of Portlets and JSP files. The content that is to be displayed within a Portlet is controlled by three methods of Personalization. These types consist of User Profile-Based, Rules-Based, and Collaborative Filtering, which can be used separately, or in unison.

User Profile-Based Personalization was found to be suited for controlling the content displayed for individual users. Therefore, this method would be best used in cases when control over portions of the displayed content can be delegated to the user, for the purpose of controlling preferences.

We feel Rules-Based Personalization will be of greatest interest to Excellus, since it provides a means of controlling content based upon a defined set of rules, which may govern a user or group of users. This technique seems to be best suited for internal and external organizational structures, allowing developers to restrict content to only those authorized, while removing a need for developing unique Portlets and/or JSP files. This need is removed since the Portlets contain the rules that decide when and where content is displayed.

Collaborative Filtering is believed to mix User Profile-Based Personalization with an external usage pattern engine, which collects data, based on individual users and controls the content displayed based on the data collected. At this time it is unknown if this feature will apply to the needs of Excellus.

4.4 LDAP

IBM WebSphere Application Server supports several different LDAP servers. Connections to an LDAP server can be made through a basic connection type (unsecured) or by using Secure Sockets Layer (SSL) for LDAP (LDAPS). The following are supported LDAP solutions: IBM Directory Server, IBM Secure Way for IBM Directory Server, iPlanet Directory Server, MS Active Directory, and Lotus Domino. Though it is expected that other LDAP servers following the LDAP specification would function, built in support is limited to these specific directory servers only. Other directory servers can be used if the required filters are completed for the given directory type.
5
Delivery
There were three key deliverables from the team to Excellus: research documentation, which addresses the findings from the team through the process; prototypes, which offer a proof-of-concept and further solidify the team’s findings, and a workshop, which was used to transfer our knowledge to the Excellus staff and answer any remaining questions they had. These deliverables are to be used by Excellus software engineers and architects to guide the design of the proposed jTIGRESS system. These deliverables are “living”, that is, they will be constantly updated as more research is discovered by the teams at Excellus.

6
Reflection
7.1 What Worked Well?

Given the nature of our project, we feel that our team adapted well to meet the requirements of the project. We strongly believe that a major contributing factor to our success was the process we chose. The Agile process conformed well to our Research and Development themed project and to our personalities. Another source of our success stemmed from the fact that our team quickly gelled. Though not all of us were privileged to have worked with each other prior to this project, we were able to work closely with one another, while leveraging the knowledge of each individual. Lastly, the number of objectives presented to us throughout the duration of the project seemed to have been the correct amount, while still allowing us to be challenged. Our team was able to assess the objectives presented and formulate a process that would accomplish them successfully, during the allotted time frame.

7.2 What Worked Poorly?

Unfortunately, or perhaps fortunately, every project does not go flawlessly. From these experiences though, we are able to learn from our mistakes and advise those who follow us. One aspect of our project that did not go as smoothly as we had anticipated was the installation of IBM WebSphere Portal. This problem stemmed from the steep hardware requirements of WebSphere Application Server and the Application Developer. During the first phase of our project a temporary system administrator was unable to provide the necessary hardware upgrades in a timely fashion, causing delays in the launch of our development. In addition to this setback, we found that the development of Portlets through WebSphere to be time consuming, which caused the need for extensive debugging. Fortunately, we were able to overcome these obstacles.

7.3 Surprises

While researching WebSphere technology we were shocked by the sheer depth and complexity of WebSphere related products. From Websphere extensions, to collaborative services, to hot-fix packs, IBM has created a product that can be overwhelming at times, when trying to determine what is needed, how to configure what is needed, and how to fix problems that were occurring.

In addition to this revelation, we discovered that the Portlet API was not nearly as intuitive as would be desired. For example, the “Portlet Session” and “User” session objects were known to store data, but their intricacies were difficult to uncover. The documentation regarding the lifetime of these objects also proved difficult to find. The naming convention of these objects caused confusion as well. Only through hands on development with these objects does one uncover these intricacies.
7.4 Client Interaction

The team interacted with Excellus contacts through the use of weekly status reports. This served two purposes: (1) to keep Excellus updated on our progress and (2) to elicit additional areas of study. The second phase saw increased client interaction. The process followed, called for bi-weekly meetings with our primary contact. These meetings proved to be effective for receiving feedback, regarding our progress through each iteration. The feedback generated was in regards to the bi-weekly deliverables of research documents and prototypes.

7.5 Future

We feel that overall our deliverables would have benefited from a more stringent document review process. In order to accomplish this, better project planning and tracking would be required from the beginning and maintained throughout the process. This would give us adequate time to review our research documentation and prototypes.
Acknowledgements
Kangaroo Software would like to thank our primary contacts from Excellus, Mike Cardillo, Robert D’Alimonte, Chris Ryan, Jeff Lasky, and all the other employees at Excellus who have contributed to this partnership. We would also like to thank our faculty coach Swaminathan Natarajan, and the rest of the faculty/staff of the Software Engineering department and RIT.

References

_1144921510.vsd

_1144921540.vsd

