Kodak Kiosk Locator
Team kiLO
	Shawn Ellis
sje1853@rit.edu
	Tom Guzewich
tjg0466@rit.edu
	Lora Magliocco
lam3434@rit.edu

	Amanda Merritt
aam4510@rit.edu
	
	Nick Shaw
njs9152@rit.edu

Department of Software Engineering

Rochester Institute of Technology

Rochester NY, 14623

www.se.rit.edu
Project Sponsor

The Eastman Kodak Company
Jack Birecree
Manager of Advanced Development
www.kodak.com
Faculty Mentor
Dr. J. Fernando Naveda
F.Naveda@rit.edu
Project Overview
All over the world the Eastman Kodak Company has deployed more than 70,000 printing kiosks in large and small stores. These kiosks are capable of printing photos from multiple forms of media. These media types include anything from Bluetooth phone cams and product prints, to thumb-drives, CDs, and DVDs. In many cases, people are not aware of the locations of the Kodak kiosks. Because of this, Jack Birecree, at the Eastman Kodak Company, filed a senior project proposal to the department of Software Engineering at the Rochester Institute of Technology. The project proposal describes the requirements of a system to help people find a Kodak kiosk using a mobile device. The system will help a potential kiosk customer get directions and a map to the nearest kiosk from that person’s current location.

The software we developed, the Kiosk Locator, is a system that is to provide end users with an easy way to locate the nearest or most convenient Kodak picture kiosk location. Once this location is identified, the user is able to obtain a map or directions to that location. This is accomplished using two major components; a client and a server.
The server side software provides an internet-exposed web service which provides clients with information about the location of Kodak picture kiosks. On a high conceptual level, it takes coordinates from the client and returns a set of kiosk locations, a graphical map or textual directions to the location.
The client side software provides the end user with an access point to the system. It allows the user to request a set of kiosks nearest to the user’s current location, as well as view the map or show the directions to that kiosk.
Basic Requirements

The major functions of the Kiosk Locator include determining and utilizing the location of the end user, providing a listing of kiosk locations in the vicinity of the end user, providing textual driving directions from a user’s location to a selected kiosk, and providing a map of directions from a user’s location to a selected kiosk. The user of this application is assumed to be able to operate a mobile device using its keypad.
Interfaces
The Kiosk Locator is comprised of four interfaces: System, hardware, user, and software. System interfaces include Microsoft MapPoint.NET, HTTP and XML. Hardware interfaces include Global Positioning System, commonly known as GPS. User interfaces are those that define how the user will interact with the system. Software interfaces include the Nokia Prototype SDK, Nokia S60 emulator, Java, JSR-179, Microsoft MapPoint.NET, as well as communications interfaces and site adaptation requirements.
System Interfaces

The server side interacts with Microsoft’s MapPoint.NET server using web services. The client side interfaces with the server side over the internet using standard HTTP and XML. HTTP requests from the client are sent to the server, which processes the request and obtains data from Microsoft MapPoint.NET. The data is then returned to the client through the use of XML.

User Interface
The overall look and feel of the system is designed to match the existing Kodak mobile device interfaces used in other Kodak mobile device software. Whenever possible, options are reduced in favor of creating simple workflows and obvious next steps for the user. Simplicity is key in preventing non-technical users from being intimidated by the product.
Hardware Interfaces

The hardware interfaces for the system include:

· Global Positioning System (GPS):

· GPS 35-PC hardware provides the system with geographical location coordinates. These locations represent the current position of the cell phone.
Software Interfaces

· Nokia Prototype SDK for the JavaTM Platform, Micro Edition

· The Nokia SDK allows for the creation of an appropriate cell phone application using Java as the development language.

· Nokia S60 Series Emulator
· In conjunction with the Nokia Prototype SDK, an S60 series emulator used to simulate the target environment. The model cell phone that is being targeted is the N80, a Nokia S60 Series phone.

· Java

· Java is used on the server side of the system to interact with the client as well as Microsoft MapPoint.NET.

· JSR-179 (Java Location API)

· The client utilizes JSR-179 for location services.
· Microsoft MapPoint.NET

· The server side of the system interacts with Microsoft MapPoint.NET using web services to obtain locations that are close to the current client location, as well as directions and maps as necessary.

· Communications Interfaces

· The server side and client side software are connected to the internet in order to facilitate communications with other parties. The server is connected to the internet through a local network via an Ethernet connection. The client software is developed on a laptop connecting to the internet through service provided by Sprint using a cell phone connection.
· Site Adaptation Requirements

· The client side software may need to be ported to each different type of mobile device on which it will be used, and design considerations must account for this.
Constraints
In this section we describe the hardware and software constraints of the Kiosk Locator.
Hardware Constraints

· GPS Hardware is used to simulate the Cell Tower Triangulation method of obtaining the user’s current location (Cell Tower Triangulation is currently not available on any cellular hardware).

· The client environment must have access to the Internet.

Software Constraints

· SOAP must be used to interact with Microsoft MapPoint.NET.

· Microsoft MapPoint.NET must be used to obtain the kiosk listing, textual directions and map directions as necessary.

External Interface Requirements
In this section we describe the external user interface requirements for the Kiosk Locator.
Opening the Application

The Kiosk Locator is listed among the applications stored on the mobile device. The user has the ability to open the application using the keypad arrows to navigate to the Kiosk Locator and press the “OK” button. The user is then taken to a screen with one option to “Find Kiosks”.

Finding Kiosks

The user then selects the “Find Kiosks” option to prompt the application to find nearby kiosks and related information. The user is then taken to a screen within the Kiosk Locator that lists the kiosk locations returned. In the event that the application is unable to determine the user’s location, the user shall be presented with an input screen allowing the user to search for kiosk locations by zip code.
Kiosk Listing

The kiosk listing is a list of twenty or less nearby kiosk locations; each kiosk is uniquely identified by store name, distance from current location to the kiosk, street address, and telephone number. Additionally, each kiosk location item within the list will have a map and driving directions option that the user can select to view the map or directions. These options are indicated to the user through text descriptions and menus. The user is able to use the keypad to scroll through the list of kiosk locations. The user may scroll through the list using the up and down arrows on the keypad.

Map Option

When the user selects the map option, the user is presented with a map highlighting the route from the user’s current location to the kiosk location, with MapPoint.NET symbols used to identify the start and end locations. The map is sized to fit on the screen with no left-to-right or up and down scrolling.

Driving Directions Option

When the user selects the driving directions option, the user is presented with driving directions to the selected kiosk location. Directions include the following information: turn-by-turn list of specific driving instructions, distance per route and each turn shall be numbered in ascending order. There are no turn icons displayed within the list of driving instructions.

Display of Output

All output displayed to the user is within a rich client designed specifically for the Kiosk Locator project. All output screens have a textual tag at the top of the screen that reads “Kodak Kiosk Locator” to indicate that the user is using the Kiosk Locator application.

All output in the form of lists highlights the selected item within the list. When the user first comes to a screen containing a list, the first item in the list is highlighted.
Development Process

Initially we decided to use a spiral based process model to help mitigate the many risks associated with the project. As we began to build our schedule, we realized the amount of work that would be involved in the research of new technologies, and we decided to change our process to a waterfall model with prototypes. This model is depicted in Figure 1. The prototypes helped mitigate the risk on aspects of the system that we were not familiar with like the MapPoint.NET communication and the JSR-179 interaction with the GPS. The prototypes provided a guideline to the final system, and therefore cut down on our development time once we were in the implementation phase.

[image: image1.emf]Requirements

Design

Implementation

Verification

Maintenance

MapPoint.NET

Proof of Concept

UI Paper Prototype

Proven interaction

between Nokia IDE

& GPS Hardware

Prototype

Development Stages

Figure 1.Waterfall Model

In the beginning of the project, we explained the process to Jack Birecree. He suggested that we look into a different process model. We then discussed the option if switching process models, and adapted to the new process. The process is described in Figure 1, and outlined in our project plan along with the team member roles and responsibilities. Additionally, issues surrounding updating documents are outlined in a configuration management document.

Furthermore, to help mitigate other risks in the project, we decided that we would meet with our project sponsor once a week to discuss any outstanding issues, as well as the progress of the project. This proved to be extremely useful in the situation above, as well as for the review of documents and prototypes.

Project Schedule: Planned and Actual

Throughout the project we used Microsoft Project to develop and maintain the project schedule. The Wideband Delphi approach was used to estimate completion times for the list of project tasks identified by the team. This was used to create a baseline project schedule. Once tasks were identified and had associated completion times, we were able to assign resources in MS Project and enter dependencies between tasks.

Six major milestones for the project were identified once the baseline schedule was developed: (1.) Nokia IDE connects to the Internet, (2.) Sponsor sign-off on UI prototype, (3.) MapPoint.NET proof of concept on the server, (4.) Create and review all test plans, (5.) Construct components and conduct unit tests, (6.) Sponsor sign-off on application.
The Milestone Tracking Chart, also discussed in the Process and Product Metrics section of this document, was used to regularly compare the actual schedule with the baseline schedule. This metric, as illustrated in Figure 2 below, tracks the slippage of the six milestones against the baseline schedule. As can be inferred from the chart, we were able to meet our first three milestones on the date that we had originally planned. The first three milestones include: Nokia IDE connects to the Internet, sponsor sign-off on UI prototype, and MapPoint.NET proof of concept on the server. The fourth milestone, to create and review all test plans, was originally planned to be completed on February 23, 2006, but was not completed until March 20, 2006. Likewise, the construct components and conduct unit tests milestones were planned to be completed on March 24, 2006, but slipped to May 4, 2006. Additionally, the sponsor sign-off on application milestone had a planned completion date of April 19, 2006, but was not completed until mid-May.
[image: image13.emf]Milestone Tracking Chart

1/3/2006

1/17/2006

1/31/2006

2/14/2006

2/28/2006

3/14/2006

3/28/2006

4/11/2006

4/25/2006

5/9/2006

5/23/2006

6/6/2006

1/10/20061/17/2006 1/24/20061/31/2006

2/7/2006

2/14/20062/21/20062/28/2006

3/7/2006

3/14/20063/21/20063/28/2006

4/4/2006

4/11/20064/18/20064/25/2006

5/2/20065/9/2006

Reporting Date

Project Date

Nokia IDE connects to the Internet

Sign off on UI Prototype

MapPoint.NET proof of concept on

server

Create and review all test plans

Construct components & conduct unit

tests

Sign off on application

Figure 2.Milestone Tracking Chart
A majority of the slippage in the project schedule can be attributed to underestimates for completion times for project tasks which required learning new technologies. The schedule slippage was not detrimental to the project as our baseline schedule had a project completion date of April 19, 2006, leaving almost a month before the actual course was finished.
System Design

Overview

The kiosk locator is a web application. It is physically distributed across three platforms, with logical separations within each tier. We designed the server to accommodate multiple output forms, as well as be independent from the direction provider services.
High Level Architecture

Architecture Diagram

[image: image2.emf]UI (Rich Client) JSR-179

GPS Hardware

MapPoint.NET Component

MapPoint .NET

Response Generator

Internet

Client

kiLO Server

Request Handler

Figure 3.High Level Design
Client

We created a rich client interface using the native user interface controls available to cell phones. The client software allows for future developers to change the way the client parses the server responses by using a mediator to coordinate between smaller modules, as shown below in Figure 4.Client Side Mediator.

[image: image3.emf]+handle()

Client::ClientMediator

+getKioskList(in lat : double, in lon : double)

+getTextDirections(in lat : double, in lon : double, in id : int)

+getMapDirections(in lat : double, in lon : double, in id : int)

Client::HttpModule

+displayKioskList(in kList : Kiosk)

+displayTextDirections(in dirs : Directions)

+displayMapDirections(in map : Map)

Client::UIManager

+parseKioskList(in xml : string)

+parseDirections(in xml : string)

+parseMap(in xml : string)

Client::XMLParser

+getLocation()

JSR-179::LocationProvider (JSR-179)

Figure 4.Client Side Mediator
Server

When designing the server side of this system, we had a few key features that needed to be implemented, as well as some extensibility points that would be desirable to Kodak. The first point came out of discussions with Jack Birecree about using a web browser interface on the phone. While we eventually decided to use a rich client, the possibility of another team creating an application that utilized the browser for displaying information was one that would probably be pursued after we deliver the project. To accomplish this, we used a builder to create the response that is sent back to the client, as shown in Figure 5.Response Builder. In our implementation, the builder creates an XML representation of the information requested from the client (list of kiosks, text directions, or a map, shown in Appendix A in Figures 6, 7 and 8, respectively). However, the representation can easily be extended to accommodate other types of string-based responses (WML, for example).

[image: image4.emf]+ResponseBuilder(in t : Resource.ResponseType)

+buildHeader()

+buildFooter()

+buildList(in k : Kiosk)

+buildMap(in m : Map)

+buildTextItem(in s : Step)

+getResult()

ResponseBuilder

+KiloResponseBuilder(in t : Resource.ResponseType)

KiloResponseBuilder

+OtherResponseBuilder(in t : Resource.ResponseType)

AnyOtherResponseBuilder

+WMLResponseBuilder(in t : Resource.ResponseType)

WMLResponseBuilder

Figure 5.Response Builder

We also abstracted the location provider from the server. This will allow Kodak to switch providers without any major rework to the design. Future enhancements would only need to implement a new interface to a location service that conforms to the model objects on the server.

Location API Provisions

The actual phone hardware will be able to use the Java location API (JSR-179). The Nokia emulator must be able to simulate the way this will work in the hardware. At first, we believed that the serial port connection could be accessed directly through the emulator. This proved to be much harder than originally thought. A much simpler solution was to create a separate Java process that polled the GPS hardware. The cell phone then used sockets to connect to our GPS coordinates provider in a client-server relationship. The ‘server’ was designed to handle multiple concurrent requests, so it will be usable for testing a load on the server from multiple clients.
Design Alternatives

Initially, Jack Birecree requested that we create an application that would seamlessly integrate into the native look and feel of a cell phone environment. At the outset, we decided the best way to satisfy this request was by using the cell phone web browser. This would have provided an easy way to integrate the look and feel, as well decrease the amount of client side code. After doing some investigation and prototyping, we determined that by choosing a web-browser interface, we would be spending a fair amount of time working around some of the limitations of the browser. With these considerations in place, Jack Birecree decided to choose the rich client that is depicted in Figure 3.High Level Design.
Process and Product Metrics
Overview

Several metrics were chosen to track the progress of the project. The metrics chosen can be categorized as follows: progress metrics, defect metrics, and effort metrics.

Progress Metrics

We used two metrics to track project progress against the project schedule: milestone tracking and earned value analysis.
Milestone Tracking

Upon the request of Jack Birecree, we implemented a weekly milestone tracking metric to track the slippage of six defined milestones against the bench-marked schedule. The milestones tracked are: Nokia IDE connects to the Internet, sign-off on UI prototype, MapPoint.NET proof of concept on server, create and review all test plans, construct components and conduct unit tests, and sign-off on application. Figure 9 below illustrates the milestone tracking metric.

[image: image5.emf]Milestone Tracking Chart

1/3/2006

1/17/2006

1/31/2006

2/14/2006

2/28/2006

3/14/2006

3/28/2006

4/11/2006

4/25/2006

5/9/2006

5/23/2006

6/6/2006

1/10/2006 1/17/2006 1/24/2006 1/31/2006

2/7/2006

2/14/2006 2/21/2006 2/28/2006

3/7/2006

3/14/2006 3/21/2006 3/28/2006

4/4/2006

4/11/2006 4/18/2006 4/25/2006

5/2/2006 5/9/2006

Reporting Date

Project Date

Nokia IDE connects to the Internet

Sign off on UI Prototype

MapPoint.NET proof of concept on

server

Create and review all test plans

Construct components & conduct unit

tests

Sign off on application

Figure 9.Milestone Tracking

We found that most of our milestones slipped from the original baseline dates for completion. This slippage could be attributed to the team’s lack of experience in estimating time to completion for project tasks.

Earned Value Analysis
We decided to use earned value analysis to track the progress of our entire project. To create the earned value chart, we identified our project tasks and estimated hours for completion of each task. We were able to associate an earned value with each task that was equal to the duration of the task divided by the total project hours, multiplied by 100. We would then estimate the percentage of completion for each task each week, which would then allow us to compute the percentage of the project that was complete. We then plotted total earned points (or percentage of project complete) against time, as shown in Figure 10 below.

[image: image6.emf]Earned Value Analysis

0

10

20

30

40

50

60

70

80

90

100

1/1/2006 1/8/2006 1/15/2006 1/22/2006 1/29/2006 2/5/2006 2/12/2006 2/19/2006 2/26/2006 3/5/2006 3/12/2006 3/19/2006 3/26/2006 4/2/2006 4/9/2006 4/16/2006 4/23/2006 4/30/2006 5/7/2006 5/14/2006 5/21/2006

Time

Total Earned Points

Figure 10.Earned Value Analysis

As can be gleaned from the earned value chart, there was a somewhat slower growth toward the beginning of the project, due to the fact that the team was still in the initial developmental stages and had not yet begun to work as efficiently as was seen later on in the project. Additionally, progress slowed mid-project due to obstacles with unfamiliar technologies. As the project progressed, the team was able to work more efficiently and solved technology-related obstacles, allowing for greater progress each week.
Defect Metrics
Bugzilla was utilized to track defects per module. As bugs were found, they would be entered into Bugzilla and would be associated with a specific project module. We used this method to track bugs in documentation, code, design, as well as test plans. Figure 11 below illustrates how this information was used to graphically illustrate defect density per module. As bugs were fixed, or deemed otherwise invalid, we would enter such information into Bugzilla, and the bug would be removed from the current list of bugs.
[image: image7.emf]Defects Per Module

XML Parser

11%

MapPoint

11%

Schedule

22%

Requirements Document

11%

Test Plans

22%

UI Workflow

11%

Design Documentation

11%

Use Cases

Risk Document

Project Plan

Requirements Document

Schedule

Test Plans

UI Workflow

Design Documentation

JSR 179

Presentation

Model

Client UI

Client Requests

XML Parser

Mediator

Servlet

Servlet State

MapPoint

Response

Figure 11.Defects Per Module

Effort Metrics

We employed two effort metrics to track effort put into the project: weekly team effort and weekly activity breakdown.

Weekly Team Effort

Total team effort was tracked on a weekly basis. Each team member was responsible for submitting a timesheet each week which identified the time spent on specific project tasks. Weekly team effort was calculated by totaling the hours spent on project-related tasks each week for each team member. This metric was tracked throughout the course of the project to identify effort put into the project, as is illustrated in Figure 12.

[image: image8.emf]Total Effort

0

10

20

30

40

50

60

70

80

(01/08/06-01/14/06) (01/15/05-01/21/05) (01/22/06-01/28/06) (01/29/06-02/04/06) (02/05/06-02/11/06) (02/12/06-02/18/06) (02/19/06-02/26/06) (02/26/06-03/04/06) (03/05/06-03/11/06) (03/12/06-03/18/06) (03/19/06-03/25/06) (03/26/06-04/01/06) (04/02/06-04/08/06) (04/09/06-04/15/06) (04/16/06-04/22/06) (04/23/06-04/29/06) (04/30/06-05/06/06)

Week

Person Hours

Team Effort

Figure 12.Weekly Team Effort

Weekly Activity Breakdown

Weekly activity breakdown was tracked on a weekly basis. Each team member was responsible for submitting a weekly timesheet which identified the time spent on specific project tasks, associating each task with a predefined category, such as requirements or design. Weekly activity breakdown was calculated by totaling the hours spent on tasks per category each week. This metric was tracked throughout the course of the project to identify effort put into specific project categories, as illustrated in Figure 13.

[image: image9.emf]Weekly Activity Breakdown

0

5

10

15

20

25

30

35

40

45

(01/08/06-01/14/06) (01/15/05-01/21/05) (01/22/06-01/28/06) (01/29/06-02/04/06) (02/05/06-02/11/06) (02/12/06-02/18/06) (02/19/06-02/26/06) (02/26/06-03/04/06) (03/05/06-03/11/06) (03/12/06-03/18/06) (03/19/06-03/25/06) (03/26/06-04/01/06) (04/02/06-04/08/06) (04/09/06-04/15/06) (04/16/06-04/22/06) (04/23/06-04/29/06) (04/30/06-05/06/06)

Week

Person Hours

Administrative

Requirements

Design

Implementation

Testing

Maintenance

Documentation

Research

Figure 13.Weekly Activity Breakdown

This metric allowed us to classify effort based on activity type, which allowed us to identify where we were spending our time. By reviewing this chart we were able to improve efficiency in areas where we were spending a lot of time, such as administrative tasks.
Product State at Time of Delivery

Based on the signed off requirements, the project has passed all of the acceptance tests. Such completed features include: gathering GPS coordinates, requesting a list of the closest 20 or fewer kiosks, getting a map and textual directions to a selected kiosk, and obtaining information on a specific kiosk such as store name and telephone number.

Along with the implementation code, requirements, design and testing documentation are available. Documentation for setting up the operating environment for both the client and the server have been forwarded to Kodak for further development of the system.

Project Reflection

Throughout the course of the project, we encountered a number of challenges. These ranged from overcoming difficulties in dealing with the new technologies to determining the best process methodologies to use and how to implement them. We were able to successfully mitigate each of these challenges to develop a working product to deliver in the end.
The Nokia Emulator was one of the first of many technology-related challenges we faced. Because cell phone application development using the latest technologies is such a new and evolving area, the tools used for such development are equally as dynamic. Many of the tools needed by the team changed versions or gained improvements and bug fixes over the course of the project. Carbide.j was one such development that we ended up using, despite the fact that it didn’t even exist when the project began. Because of the dynamic nature of the tools involved, many of the components used were in various states of beta releases and did not run quite as smoothly or easily as one would like. Configuration of these tools and getting the different aspects of the development environment to work nicely together was a challenge.
Also, because the Nokia emulator system was new to us, it was a particular challenge to establish a connection to the GPS hardware that needed to be used for this project. In order to connect to the GPS hardware, a system of connecting through open ports was developed.
One of the big learning opportunities for us on this project was in the discourse which developed from a sponsor request made during the late requirements and early design phase of the project. The request was to make the system based on a thin mobile client equipped with only a web browser, rather than specific client software which had to be installed on the device. This request would have provided a number of advantages to Kodak, among them being the ability to port the application to different mobile devices with virtually no effort and the ability to make changes to the system at will without distributing updates to any clients. Unfortunately, we were unsure if such a request would even be possible to implement, specifically within the time available for the project.
It was our belief that the original requirements, which received the signoff from Jack, involved the use of client software specific to the kiosk locator system. This made us resistant to the fairly large change which was requested. Of course we did want to satisfy every request of the sponsor that was possible, so the concept of implementing the change had to at least be evaluated. In the first few conversations with the sponsor, we did not really have a very organized means of conveying our point of view. The concerns expressed were those of how possible such a change would be, but did not involve enough research to speak in certainties or concrete claims. The result was a continual pushing and pulling that went back and forth between us and the sponsor about which type of client would be used.
After a period of time of this ineffective back-and-forth discourse, we decided to take a different approach. In preparation for the next sponsor meeting, we brainstormed all the different ways that the browser usage request might be accommodated and one possible compromise which maintained the client software but allowed for later extensibility to push in to the direction of a thin client solution. Each of the possible solutions were evaluated on the predicted difficulty of the implementation and how much research would be involved in getting it to work, the chances that the solution would actually succeed (since none of the methods were known to the team as definite possibilities), and the quality of the design that would result from that solution (dubbed the “Hack Factor” by the team.) These solutions and their qualities were all documented at the meeting and then presented to the sponsor.

After presenting these solutions in a tangible form, the sponsor was able to make a decision with as much information as possible within a few days. The solution that was chosen ended up being the compromise involving the client software with flexibility on the server side to allow for later development in the area of the thin client interface.
There were a number of things which went well for us throughout the course of development. The strong Java ties in the requirements worked well because all of the developers had a strong Java background from their years of experience in RIT’s Java-based CS and SE courses. Several of us also had experience and knowledge based around the J2EE framework, client-server architectures, and the development of mobile device user interfaces. This experience helped us in the development of the Kodak Kiosk Locator.

Appendix A (XML Structures)
[image: image10.png]Structure || values
=715 Kiosidist.
=@ Kosk
@ lat 5225255
@ lon a2
"\, StoreName. Rite-Aid 1156
"\, PhoneNumber
N, Address 4Pleasant Avenue
Nty Tupper Lake
N\ state [
"\ Country Us
"\ Distance 12.357173397143482
=@ Kosk
@ lat 225171
@ lon Sas1
"\, StoreName. Tops Market 0707
"\, PhoneNumber | (518) 3539157
N, Address 50 Demars Blvd. 513
Nty Tupper Lake
N\ state [
"\ Country Us
N, Distance '12.780362210336559.

Figure 6.List XML Structure

[image: image11.png]Structure Values
=% KioskDirection
&8 step Depart Start on Localroad(s) (North)
@ dstance 0.5700000286 102255
2@ step Turm LEFT (North-Wes) onto Coreys Ra
@ dstance 2.30000013073%563
2@ step Bear RIGHT (North-East) onto SR-3 [Tupper Lake Finy]
@ dstance 20.51000022885 1536
2@ step Keep STRAIGHT onto SR.56 [River 51
@ dstance 0.3900000154972076%
2@ step Bear RIGHT (South) onto Local road(s)
@ dstance 0.05000000074505806
2@ step Bear RIGHT (South) onto SR-86 [Loke Flower Avel
9 dstance 1.530000033378601

' distance

Arrive End

0.0

Figure 7.Text Directions XML Structure

[image: image12.png]Structure.

Values

=-%13 KioskMap
N Map

http:/frenderv302.bay.staging.mappoint.netjrender -30/ge tmap.aspx?key =B 7DEEEA TDB6F BECDET58.

Figure 8.Map Directions XML Structure

_1206854573.vsd
+handle()

Client::ClientMediator

+getKioskList(in lat : double, in lon : double)
+getTextDirections(in lat : double, in lon : double, in id : int)
+getMapDirections(in lat : double, in lon : double, in id : int)

Client::HttpModule

+displayKioskList(in kList : Kiosk)
+displayTextDirections(in dirs : Directions)
+displayMapDirections(in map : Map)

Client::UIManager

+parseKioskList(in xml : string)
+parseDirections(in xml : string)
+parseMap(in xml : string)

Client::XMLParser

+getLocation()

JSR-179::LocationProvider (JSR-179)

_1207322456.vsd
Requirements

Design

Implementation

Verification

Maintenance

MapPoint.NET Proof of Concept

UI Paper Prototype

Proven interaction between Nokia IDE & GPS Hardware

Prototype

Development Stages

_1206854863.vsd
+ResponseBuilder(in t : Resource.ResponseType)
+buildHeader()
+buildFooter()
+buildList(in k : Kiosk)
+buildMap(in m : Map)
+buildTextItem(in s : Step)
+getResult()

ResponseBuilder

+KiloResponseBuilder(in t : Resource.ResponseType)

KiloResponseBuilder

+OtherResponseBuilder(in t : Resource.ResponseType)

AnyOtherResponseBuilder

+WMLResponseBuilder(in t : Resource.ResponseType)

WMLResponseBuilder

_1206812828.vsd
UI (Rich Client)

JSR-179

GPS Hardware

Internet

MapPoint.NET Component

