Datto Disaster Tracking
Design/Architecture Document

Masters of Disaster
Nsama Chipalo, Brandon Cole, Aaron Damrau, Jhossue Jimenez, Jacob Peterson

Last Updated
May 11th, 2015

Table of Contents

Table of Contents
Revision History
Purpose
High Level Architecture Diagram
Architecture of Mock Systems
Database
Use Case Diagram
API Design
APl Sequence Diagrams
API Specification

Revision History

Name Date Reason For Changes Version
Masters of 10/6 Creation of document 1.0
Disaster

Masters of 10/13 | Expansion on API Design 1.1
Disaster

Masters of 11/3 Added Design of Mock Systems 1.2
Disaster

Masters of 11/17 | Updated DB tables 1.3
Disaster Updated API Design

Masters of 4/9 Update to high-level and mock stack 1.4
Disaster diagrams

Masters of 511 Final release 1.5
Disaster

Purpose

This document provides a comprehensive architectural overview of the system. It is intended
to capture and convey the significant architectural decisions which have been made on the

system.

High Level Architecture Diagram

Senior Project

SQL
) Database
MaxMind

|| Our APls Weather API|

Datto API
(mocked by team)

Apple Push
Notification
Gateway

Internal/External
WebApp

O

Diagram 1

External:
e MaxMind - provides geolocation information based on IP addresses to Datto.
e Datto API - provides APIs for our project to get a list of customers and provides login
functionality.
Weather API - provides weather information to be used for risk calculation.
Apple Push Notification Gateway - responsible for sending push natifications to the
corresponding MSP owned Apple devices.
Internal:
e Mobile Device - used by MSPs, shows a list of their customers. Notifies the MSP
when one or more of their devices are above a risk threshold.
e Internal/External Web App - Used by Datto and MSPs, renders a map view of devices.

e Our APIs - Used by the Web App and Mobile Devices to render views and lists.
Responsible for all logic that occurs (calculating risk levels) and coordinating
communications with external APIs.

e SQL Database - Used as a cache that is updated periodically with new weather and

device information.

Architecture of Mock Systems

Update Devices

———POST /devices GET /devices.

Batch Job (1x/day)

GET /devices_for_token?token=XYZ

(Senior Proiect Team | T T T T T T] MBatio (mocked by tearm) T T T T

Senior Project Team Datto (mocked by team)

|

| [
| I
Devices API j—Authenticate—I—b»

(POST, GET, OAuth Client
DELETE /devices) 1&—}Token Response———

|

|

|

|

|

|

|

|

|

OAuth Server Devices API

MSP Datto
Credentials Devices

I

Diagram 2

Due to constraints on the resources Datto currently has available, the team has decided to
implement several of the systems they will provide for production as mock systems. This will
allow us to be better prepared come integration time with Datto’s systems. The OAuth Server,
Devices API, MSP Credentials database, and Datto Devices database will all be created on
our end to mimic the Datto implementations as closely as possible.

OAuth Server: This module does not currently exist in Datto’s system. The team will
implement what is expected to exist once this product is integrated with Datto. The OAuth
Server is responsible for authenticating login credentials against the existing MSP database.

Devices API: This module does not currently exist in Datto’s system. The API provides a way
to receive Datto’s devices in a RESTful way. This allows the Batch Job to receive the devices
from Datto, and update the Devices database that exists in the Disaster Tracker project,
keeping the databases in sync with each other. As a note, this APl may not exist forever, if
Datto decides to implement an observer implementation or other design to resolve the issue
of keeping multiple databases in sync.

MSP Credentials: This module currently exists in Datto’s system. We are not able to hit it
directly, so we will be mocking it to use in combination with login through the OAuth Server.

Datto Devices: The module currently exists on Datto’s end. We are not able to access the
official Datto devices, so they must be mocked on our end in our own server. These devices
will be fed into the Devices API to obtain their geographic location.

Database

The following diagram details the database schema for our system.

Devices - The Devices table will act as a cache that stores device information that will
be used to populate the risk map. Everyday at 12:00am EST, a job will run that will
update the list of devices. Every 10 minutes, another job will run that will update the
Risk rating for each device, based on current and upcoming weather patterns around
that device’s location. This 10 minute interval will coincide with updates the Weather
API receives. Notifications will be sent at this time to MSP’s whose device’s are at risk.
The status of sent notifications will also be stored to ensure we do not send multiple
notifications for the same device disaster event.

Cities - At 12:00am EST when the list of devices is being updated each device will also
be linked to the Cities table. This will allow us to display relevant location information
for devices to users without having to make repeated calls to get the city and state via
coordinates. This will cut down on the amount of calls we must make, increasing the
performance of the system.

MSPToAppleDevice - The MSPToAppleDevice table will store user device tokens
(apple_id) that will allow us to send out targeted push notifications to the appropriate
MSP when a device becomes at risk.

WeatherType - This table holds relevant information regarding the specific weather
types given by NOAA with a risk number associated with each weather type to be
used in the generation of the risk number for a weather alert. This will allow us a easily
update the associated risk number should the risk of a specific weather change.

Devices | MSPToAppleDevice |
latitude Float Primary| apple_id | Varchar
longitude Float { msp_id |Int J
msp_id Int

Primary |device_id Int
risk Float
Foreign | city_id Int
natification_sent |Boolean
cause Varchar
Cities | WeatherType |
Primary | id Int Primary | type |Varchar
name Varchar name|Varchar
state Varchar risk |Double
ugc zone |Varchar
uge_county | Varchar

Diagram 3

Use Case Diagram

Basic overview of system functions and actors interacting with the Datto Disaster Tracker.

System
P
- ~
Ve ~N
//[Get Geolocation]\\ MaxMind
/ \
/ [Get Weather Data
/
Render Map with Weather API

Points

View All Devices

Datto (Internal) User

Filter Devices by Risk]

View MSP Specific Devices]

Google Maps API

Weather Radar
Overlay

Add/Remove ‘

| /

Apple Push API

MSP (External) User Log into Web/Mobile Application] /

Diagram 4

Get Geolocation: Device information from Datto needs to be sent to the MaxMind API to
obtain geo-location information. The points will then be stored within the system database

after being instantiated.

Get Weather Data: Every ten minutes, the system will retrieve weather information using our

weather APl. Weather information is used to calculate the risk of devices in disaster areas.

Render Map with Points: Using the Google Maps API, we generate a map of the entire
planet, populating it with the various points we received from Datto which represent devices

and weather patterns from the weather API.

View All Devices: Filter the map so that all Datto devices are present. This is a Datto user
interaction only because MSPs will only be provided with their devices.

Filter Devices by Risk: Changes the way the devices are listed on the side bar. All devices
will be ordered from most at risk to least at risk.

View MSP Specific Devices: An interaction shared between internal and external users of
the Datto Disaster Tracker system. Devices from a specific MSP will be displayed on the map
instead of all devices. In the case of the external user, this is the only way to view devices on
the rendered map.

Add and Remove Weather Radar Overlay: The user of the web application will have the
ability to add and remove a weather radar overlay from the device dot map.

Log into Web/Mobile Application: An external user will log into the system using their Datto
MSP credentials.

Sign up for mobile alerts: When logged into the mobile application, an external MSP user
can sign up for push notifications to alert them on the status of any devices that are at high
risk.

Send Push Notification: If the mobile external user signs up for mobile alerts and one or
more of their appliances is in an at risk area, the apple push notification APl will send them an
alert to notify them that their devices are at risk.

API Design

APl Sequence Diagrams

Note: The sequence described in Diagram 5 is the suggested approach. However, due to
resource constraints, Datto has indicated that they will not be able to implement this observer
approach. This section will remain in this document to describe the ideal approach, however,
the description of mock systems above represents the actual implementation at this time.

‘Disaster Tracker Datto

POST fdevice-observers

FOST fdevices (creata) Z‘ z:riﬁf;iﬂﬁiz
DELETE /devices/id] (delete)

PUT /devices/id] (update)

Diagram 5

Sequence Diagram 5 illustrates the process related to a Datto device being registered,
modified, or unregistered from Datto’'s system. When such an event occurs, “device
observers” must be notified of the change. In specific, the disaster tracker is a device
observer that is observing the subject, Datto. After registering with Datto as a device
observer (by sending a POST request to /device-observers; details of this implementation are
outside of the scope of disaster tracker and are described in a separate document), Datto is
responsible for notifying disaster tracker (and any other observers) of a device-related event.
The notification should be achieved by calling the appropriate HTTP POST, DELETE, or PUT
operation on the resource endpoint provided during observer registration (for disaster tracker,
this endpoint is /devices).

API Specification

e GET /devices

o

o

o

Description: Used by web and mobile interfaces to get the devices for the user
that is logged in. The endpoint checks for a “token” session variable (populated
during login on the web application). A “token” input parameter (GET
parameter) can also be sent, intended for use by the mobile app.
Authenticated Users: MSP or Datto (OAuth Authenticated)
Input Format: (Query String)

m /devices?token=TOKEN

e optional, intended for mobile app use

Output Format: HTTP 200 (JSON array)
[{

device id: Integer,
msp id: Integer,
latitude: Float,
longitude: Float,
risk: Float,
cause: String, // NULL if risk = 0
city: {
id: Integer,
name: String,
state: String,
ugc zone: String,
ugc_county: String

]
Error Output Format: HTTP 401 (Unauthorized)

{

error: “Not logged in.”

e POST /devices

o

o

o

Description: Internal Use Only. Used by Datto to create a new device.
Authenticated Users: Datto Intranet
Input Format: (application/x-www-form-urlencoded)
POST parameters:
m device id: Integer

msp id: Integer
latitude: Float
longitude: Float

city: String

m state: String
Output Format: HTTP 201 (Created)
{

id: Integer,

uri: String // Not implemented at this time
}
Error Output Format: HTTP 400 (Bad Request)
{

error: String

Example error: "Device with device _id '123' already exists."

e DELETE /devices!:id

Description: Internal Use Only. Used by Datto to delete a device.
Authenticated Users: Datto Intranet

Input Format: Empty (HTTP Delete)

Output Format: HTTP 204 (No Response) - empty body

o

o O O

