Software Requirements Specification

for

U of R eXtensible Library
Name Access Control Module

Version 1.3 unapproved
Prepared by Rob Busack, Anthony Lyo, Matthew Horoszowski,
Ben Greenwood, Dean Rzonca
Rochester Institute of Technology
Created January 12, 2007

Table of Contents

iiTable of Contents

Revision History
iii
1.
Introduction
1
1.1
Purpose
1
1.2
Document Conventions
1
1.3
Intended Audience and Reading Suggestions
1
1.4
Project Scope
1
1.5
References
1
2.
Overall Description
2
2.1
Product Perspective
2
2.2
Product Features
2
2.3
User Classes and Characteristics
3
2.4
Operating Environment
3
2.5
Design and Implementation Constraints
4
2.6
User Documentation
4
2.7
Assumptions and Dependencies
4
3.
System Features (functions)
5
3.1
Import a record into database
5
3.2
Matching records
5
3.3
Exporting records
6
3.4
Generate report
6
3.5
Review possible matches
7
4.
External Interface Requirements
7
4.1
User Interfaces
7
Software Interfaces
7
5.
Other Nonfunctional Requirements
9
5.1
Performance Requirements
9
5.2
Safety Requirements
9
5.3
Security Requirements
9
5.4
Software Quality Attributes
9
Appendix A: Glossary
10
Appendix B: Analysis Models
10
Appendix C: Issues List
11

Revision History

	Name
	Date
	Reason For Changes
	Version

	Rob Busack
	Jan. 12, 2007
	Combining sections that team members wrote individually into one document.
	1.1

	Anthony Lyo
	Jan 13 2007
	Proof read and add issues to Appendix C
	1.2

	Rob Busack
	Jan. 16, 2007
	Another proof read before presenting this document at a meeting with the sponsors.
	1.3

1. Introduction

1.1 Purpose

This document will provide the requirements and specifications for the initial version of the Name Access Control Module (NACM) in the University of Rochester's eXtensible Library project. This document will specify the required functionality of NACM, specify the API exposed to other programs, and specify the functionality of the GUI provided to demonstrate the NACM. All other aspects of the eXtensible Library project are outside the scope of this document.

1.2 Document Conventions

1.3 Intended Audience and Reading Suggestions

The intended audience for this document includes the developers (Team MetaCat), the project advisor, and the U of R project sponsors. For the developers, this document will be used to specify what functionality the system must have, how the system will behave, and what other systems must do to be able to interact with it. For the sponsors, this document will allow them to verify that the system being developed meets their needs. Finally, this document will allow the advisor to gauge our understanding of the project and our progress.

1.4 Project Scope

This project will cover the NACM, an API for the NACM, and a GUI to demonstrate the functionality of the NACM. Other applications that will eventually make up the rest of the eXtensible Library are not part of this project.
The NACM will be responsible for converting the existing legacy information to a more open system that can be easily accessed by other programs, as well as through the NACM API. As such, it will be the foundation of the eXtensible Library system. It will also provide functionality such as being able to view reports about the data, as well as detecting and attempting to fix incorrect information.

1.5 References

ChartingActivityTracker.xls

Project Schedule.mpp

Risk Management.xls

Use Case Descriptions.doc

Use Cases.vsd

NACM Project Plan.doc

2. Overall Description

2.1 Product Perspective

Currently, the University of Rochester uses an aging proprietary system to hold digital information on material in the library collection. This system, while functional, has limited features and a non-intuitive user interface. They would like to extend the functionality of the system with custom-written software.

One module of the new eXtensible Library software will be the Name Access Control Module. Lots of bibliographic data has been manually entered into Marc Bibliographic records, Marc Authority records, and Dublin Core records, but not without errors. The responsibilities of the Name Access Control Module are finding erroneous data in Subject and Author fields of bibliographic records, and identifying the correct authority record that it should be matched to.

2.2 Product Features

The Name Access Control Module will take the existing MARC and Dublin Core metadata from the existing XML files, parse them, create relations between bibliographic records and authority records, and then provide an easy mechanism for other systems to search and interact with this data. This is complicated by the fact that not all the data in the existing database is correct. When creating relations between records, the system will be able to identify and correctly match records that have alternate forms of the authority name. The system will create new authority records if none exists in the system. There are a variety of rules for matching these records, and it must be easy to modify the matching rules in our system. Additionally, the system must allow librarians to view and confirm or reject matches that the system is uncertain about.

[image: image1.emf]
Figure 2.2.1: A Use Case diagram, showing the useful tasks the system shall perform.

2.3 User Classes and Characteristics

Cataloger: A cataloger will tell the system to import certain Marc and/or Dublin Core bibliographic records, and then tell the system to attempt to match them up against Marc authority records, self generated authority records, or other outside sources of information.

Librarian: Using a GUI, the librarian will be able to view a list of matches the system is unsure about and confirm or reject each of them. Often, the librarian and the cataloger are the same person.

Developers: The secondary users are future developers who will use the API of the project to incorporate it into the larger software system of the U of R eXtensible Library, which is beyond the scope of the Name Access Control Module.

2.4 Operating Environment

The software will be written in Java, and will also require MySQL and Hibernate to be installed. It will be developed and tested with Windows XP as the expected operating system on which it will run. No minimum hardware requirements are expected beyond what is necessary for the software listed, but of course the slower the hardware, the longer the batch processing can be expected to take. No anticipations of coexisting but conflicting software packages on the target machine have been made.

Summary of Software Dependencies

· Java SE 1.5 Runtime Environment

· MySQL 5.0

· Hibernate Core and Hibernate Annotations, v3.2.1

· Windows XP

2.5 Design and Implementation Constraints

The code that is produced must be understandable to developers who were not involved in the original writing of that code. To facilitate understandability, Javadoc comments will be included in the code, and care will be taken to avoid code smells. No other constraints have been specified in relation to hardware limitations, security of the database, support of foreign languages, etc.

2.6 User Documentation

Since the primary task of the system is batch processing without user interaction, there will be no user manual for the layman. However, technical documentation for future developers will be essential for easing the task of new programmers working with the system. Included with the delivery of the system will be Word documents, including embedded Visio diagrams that describe:

· Project Plan

· SRS (this document)

· How to install the software

· The high level architecture of the system

· The meaning of the fields in the MySQL Schema

· Rational behind any details of the design which are not obvious from the architecture.

2.7 Assumptions and Dependencies

It has been assumed that:

· MARC Bibliographic, MARC Authority, and Dublin core records are all in XML formats, and stored as plain text files.

· The system is expected to export modified records as XML formatted text files, matching the type of record the data was originally imported from. (i.e. Marc Bib or Dublin Core)

· There are no security requirements.
· Different record types are imported into the system at once, and the system shall be able to identify them correctly.
3. System Features (functions)

3.1 Import a record into database

3.1.1
Description and Priority

A record in XML format, which can be an authority record, a bibliographic record or other types of record, is added to the system. This feature has the highest priority level.

3.1.2
Stimulus/Response Sequences

See use cases 1.0, 1.1, and 1.2 in Use Case Descriptions.doc.

3.1.3
Functional Requirements

FR-1.1: The system shall parse the XML record.

FR-1.2: The system shall store the information that obtained from parsing the XML record into MySQL database.

FR-1.3: The system shall be able to import multiple records at once. (Batch processing)

FR-1.4: The system shall normalize strings.

3.2 Matching records

3.2.1
Description and Priority

Contents of authority-controlled fields in a record are checked against authority record sources and replaced with their authorized forms. All unprocessed records are checked again per the user’s request. This feature has the highest priority.

3.2.2
Stimulus/Response Sequences

See use cases 2.0 and 2.1 in Use Case Descriptions.doc.

3.2.3
Functional Requirements

FR-2.1: The system shall create a new authority record.

FR-2.2: The system shall match two strings and give a confidence level of the matching.

FR-2.3: The system shall store the results of the matching that includes the degree of certainty, and the link(s) matched authorized record(s).

FR-2.4: The system shall identify all unprocessed records in the records database. The unprocessed records are the records that have not yet been matched against.

FR-2.5: The system shall create a new authority record, and store it in the database.

FR-2.6: The system shall replace the data in authority-controlled fields with its authorized form and store the link to its authorized form if the degree of certainty is above auto-accept threshold.

FR-2.7: The system shall mark the record to be reviewed by a person if the degree of certainty is between auto-accept threshold and auto-reject threshold.

FR-2.8: The system shall create a new authority record using the information from the current record, and create a link between those two records if the degree of certainty is below auto-reject threshold.

FR-2.9: The system shall analyze unprocessed records on demand.

FR-2.10: The system shall attempt to match records first by comparing authority names.

FR-2.11: The system shall attempt to match records by comparing alternative names if the first attempt (FR-2.10) failed.

3.3 Exporting records

3.3.1
Description and Priority

A record in MySQL database is exported to corresponding XML format. This feature has the highest priority level.

3.3.2
Stimulus/Response Sequences

TBD

3.3.3
Functional Requirements

TBD

3.4 Generate report

3.4.1
Description and Priority

Generate a report of usage statistics as requested by the users. This feature has the highest priority level.

3.4.2
Stimulus/Response Sequences

See use cases 3.0 in Use Case Descriptions.doc.

3.4.3
Functional Requirements

TBD

3.5 Review possible matches

3.5.1
Description and Priority

A user reviews possible matches for authoritative names that are identified by the system. This feature has the highest priority level.

3.5.2
Stimulus/Response Sequences

See use cases 4.0 in Use Case Descriptions.doc.

3.5.3
Functional Requirements

FR-5.1: The system shall gather a collection of records that are marked to review from the database. The questionable matches have the degree of certainty level between auto-accept threshold and auto-reject threshold.

FR-5.2: The system shall replace the data in authority-controlled fields with its authorized form and store the link to its authorized form if the user approves the matching.

FR-5.3: The system shall replace the data in authority-controlled fields with its authorized form and store the link to its authorized form if the user approves the matching.

4. External Interface Requirements

4.1 User Interfaces

The main user interface to the project will be through an example wizard GUI. The user will select an authority source and a bibliographic source. Then the system will begin the processing of these records. When the processing is done, the user can review the matches, and then confirm or reject those changes.

Reference Nacm1-7.jpg for the prototype

4.2 Software Interfaces

The main software interface will be an API granting access to the systems within. The user should be able to manipulate the system using this API. The following are the functions in the API, their inputs and outputs, as well as a quick summary of what they do.

Function: ImportRecord

Parameters: xmlRecord – a string containing the full xml of a record

Returns: Boolean true if record was successfully imported, false otherwise

Summary: Imports a given record into the MySQL database, parsing its contents and normalizing any values that need normalization

Function: MatchRecords

Parameters: None

Returns: Void

Summary: Process all unmatched bib records and attempts to match them to auth records. It records any possible matches and the methods used to achieve such a match.

Function: GetPossibleMatches

Parameters: None

Returns: A list of match ids

Summary: The list match ids include the ids of all matches found that have not yet been either confirmed or rejected

Function: GetBibRecord

Parameters: bibId – The id of the bib record to be retrieved

Returns: A Bibliographic Record

Summary: Get the bibliographic record as specified by the bibId

Function: GetAuthRecord

Parameters: authId – The id of the auth record to be retrieved

Returns: An Authority Record

Summary: Get the authority record as specified by the authId

Function: GetMatch

Parameters: matchId – The id of the match to be retrieved

Returns: A Bibliographic-Authority-Match

Summary: Get the match as specified by the matchId

Function: ConfirmMatch

Parameters: matchId – The id of the match to be confirmed

Returns: Void

Summary: Sets the given match to confirmed status

Function: RejectMatch

Parameters: matchId – The id of the match to be rejected

Returns: Void

Summary: Sets the given match to rejected status

5. Other Nonfunctional Requirements

5.1 Performance Requirements

While there are no hard performance requirements, performance is a significant consideration if the system is to be useful. Processing of records may be performed as a batch operation with a large number of records. In the interest of reducing the running time of these operations, an effort shall be made to increase computational efficiency by selecting fast algorithms.

5.2 Safety Requirements

Calculations performed by the system must be reliable, as they will be used in a production catalog. Uncertain results must be properly identified as such, and data below a specified reliability threshold must not be introduced into the production catalog without explicit approval.

5.3 Security Requirements

Currently, no security requirements have been identified.

5.4 Software Quality Attributes

Interoperability

The system may need to interact with other components in the eXtensible Catalog. Extension points must be made available, and interfaces must be provided to facilitate integration into a larger system.

Maintainability

As part of an open source project, it is likely that numerous other developers will maintain this system in the future. As such, interfaces must be clearly defined and documented. Additional search techniques may also be incorporated at later points, so this must be facilitated.

Correctness

A large amount of data is processed by the system, so it is not feasible to double-check all results. All results must be correct, or marked as questionable.

Reliability

Due to the computationally intense nature of the work being done, jobs may often be processed as a batch. The system must be able to silently recover from faults without halting a job, as a user may not be available to intervene.

Portability

The system shall be portable across platforms. This is implicit since it is to be implemented in Java. However, testing and support will only be provided for Windows XP.

Appendix A: Glossary

Authority Record – A record containing the authorized form of a name. In addition to the authorized form, any number of alternate forms may be associated with an authority record. An authority record may also contain references to other authority records (see-also references).

Authority-Controlled Field – a field in a bibliographic record that has a corresponding field in authority records. These fields must be made consistent with their corresponding fields in an authority record.

Authorized Name – The accepted form of a given name. This is the form that must be used throughout the catalog whenever that name occurs. This includes the specific spelling, capitalization, punctuation and formatting.

Auto-Accept Threshold – A degree of certainty above which a matched authorized name will be automatically accepted as correct with no user approval needed

Auto-Reject Threshold – A degree of certainty below which a matched authorized name will be automatically discarded without user intervention needed

Bibliographic Record – A record corresponding to some item in a library’s collection. Authority-controlled fields in these records are examined by the system.

Dublin Core – A newer, alternative form for bibliographic and authority records that is considerably less formal than MARC. For more information, see http://dublincore.org/

MARC – Machine Readable Catalog record. For more information, see http://www.loc.gov/marc/uma/

Normalize – Perform manipulation on a string to put it into a standardized form. For more information, see http://www.loc.gov/catdir/pcc/naco/normrule.html

Appendix B: Analysis Models

Please see NACM Design notes.vsd.

Appendix C: Issues List

1. Will there be multiple independent users of the system, or will all data be globally shared between users? SOVLED

2. If so, what will be the restrictions on each user on other users’ data? SOLVED

3. What kind of user authentication would be required for these users? SOLVED

4. Will there be an administrator account that manages users on the system? SOLVED

There will be no user management.

5. What information in the database will be shared? SOLVED

There is only one database that will be shared.

6. What will be persistence in the database? SOLVED

7. Will there be multiple stores of authority and bibliographic files, or just one massive central one? SOLVED

There is only one database that will be shared.
8. How do we handle the adding of new authority files into the system, specifically with the conflict with existing bibliographic file created authority files? SOLVED

The information on existing authority files and new authority files need to be merged.

9. What kind of output do you want generated from the system? SOLVED

Team will come up with some statistics for the sponsors to look at.

10. Will there be any pushed output, such as generated xml files with updated authority names of bibliographic records? Or will all output be pulled though API commands at our persistent storage?

11. Are you interested in statistics generated from the matching process, such as percentage of bibliographic records which authority names match directly, or is this information not important to you? Also what kinds of statistics are desired? SOLVED

Team will come up with some statistics for the sponsors to look at.

_1230204781.vsd
System

Naming Access Control Module

Librarian

Cataloguer

1. Import Record

1.1. Import Auth
Record

1.2. Import Bib
Record

1.1.1. Import MARC
Auth Record

1.2.1. Import MARC
Bib Record

1.2.2. Import DC
Bib Record

«extends»

«extends»

«extends»

«extends»

«extends»

*

*

2.0 Match Record

4.1 Verify Results

*

*

4.1.1. Approve

4.1.2 Reject

«extends»

«extends»

4.0. Review
Possible Match

*

*

3. Generate Report

*

*

API User

1.3. Batch Import

2.1 Match All
Unprocessed Records

