Architecture and Design Specifications

for

U of R eXtensible Library
Name Access Control Module

Prepared by Rob Busack, Anthony Lyo, Matthew Horoszowski,
Ben Greenwood, Dean Rzonca
Rochester Institute of Technology

Created on 1/28/07
Revision History

	Name
	Date
	Reason For Changes
	Version

	Anthony Lyo
	Jan 28 2007
	Matcher subsystem
	1.0

	Dean Rzonca
	Jan 28 2007
	Domain model and data persistent added
	1.1

	Anthony Lyo
	
	
	

Architecture of Name Access Control Module

[image: image1.emf]
Matcher Subsystem

Class Diagram

[image: image2.emf]
Descriptions

MatchDriver

This class is responsible for starting a matching process. It reads a configuration file that specify different StringTransformers to use for matching. It also initiates a list of MatchStrategies (for example, MatchAuthorizedForm, MatchAlternateForm and etc.). MatchDriver goes through several steps to perform matching, and it is described in the design diagram.

MatchDriver goes through a list of unprocessed bibliographic records and match them against authority records using different MatchStrategies. After finding a successful match, a link is created between records, and it is saved in the database.

MatchStrategy

This is an abstract class. It defines a method named match() which creates links between records. Currently there are 3 strategies. AuthRecordTemplateMatchStrategy, GenerateMatchStrategy, and WebServiceMatchStrategy.

StringTransformer

This class performs different operations on strings. We may try swapping last name and first name to get better matching results. For example, brown james to james brown.

AuthRecordTemplateMatchStrategy

This is an abstract class. It uses template methods to compare authorized name and alternate names. This class has a list of StringTransformers that can transform strings into various forms in order to find a good match. It then uses AuthorizedNameAuthorityRecordMatchStrategy and AlternativeNamesAuthorityRecordmatchStrategy to compare authorized names and alternate names. All matches are done in MatchStrategy classes that inherited from this class.
AuthorizedNameAuthorityRecordMatchStrategy

This class is a MatchStrategy to compare authorized name. It has a list of StringTransformers that it inherits from AuthRecordTemplateMatchStrategy. For every StringTransformers, we apply transformation to the name from a bibliographic record then we compare it against all authorized names from all authority records.

AlternativeNamesAuthorityRecordmatchStrategy

This class is a MatchStrategy to compare alternate names. It has a list of StringTransformers that it inherits from AuthRecordTemplateMatchStrategy. For every StringTransformers, we apply string transformation to a name from a bibliographic record then we compare it against all alternate names from all authority records.

GenerateMatchStrategy

This class is a MatchStrategy. When we are unable to find a match with current authority records in the system, a new authority record is created from the current bibliographic record. Then it creates a link between those two records.

WebServiceMatchStrategy

This is to use the information from various internet web services to find matches. It is currently TBD.

Thresholds

There are two thresholds in the configuration file.

Auto-accept threshold

When a match results in a confidence level greater than this threshold, we create a link between the bibliographic record and the authority record. We mark the link status as confirmed. All the matches that are above this confidence level will not be shown to the users to confirm or reject.

Auto-reject threshold

When a match results in a confidence level lower than this threshold, we ignore the result. But if the confidence level is between those two thresholds, we create a link between the bibliographic record and the authority record. We mark this link as to be reviewed by the user (either to reject or to confirm).

Applying AuthorizedNameAuthorityRecordMatchStrategy and AlternativeNamesAuthorityRecordMatchStrategy

The resulted confidence level from applying AuthorizedNameAuthorityRecordMatchStrategy is higher than those from applying AlternativeNamesAuthorityRecordMatchStrategy. WHY??

Assumptions

· No two authority records have the same authorized name.

· Library of Congress id is unique for every MARC authority record.
Importing Authority Records and Bibliographic Records

[image: image3.emf]

XML Hash Code – By using a XML file as an input, a hash code is generated.

Key Values Hash Code – A hash code is generated by using one (or more) unique field(s) in an authority record. Currently the system uses the following field(s).

TBD
Importing a New Authority Record

When a new authority record is being imported, the system checks XML hash code, and checks if it already exists in the system. If there is no match, the system checks key values hash code of the authority record and tries to find a match. If there is no match, it means it is a new authority record that is not yet in the system’s database. It makes a new record and saves it in the database.

Importing a Duplicate Authority Record

The system detects whether the authority record being imported is already in the database. There are two scenarios.

First, the authority record being imported is already in the database. The record in the database is exactly the same as the one currently being imported. In this case, the system does nothing and ignores the record.

Second, the authority record being imported is already in the database, but the record from the database is being generated by the system while the system is performing matches. In this case, the two records are merged into a single record in database. Merging of two authority records is described below.

Merging Two Authority Records

TBD
Domain Model

Class Diagram

[image: image4.png][AuthorityUink |
orceniCon'dence
approvedsy
oveierco
agged
piny
whenFound
/-mavwm
autorizsdbdtors =
urorisdsitiess relaiedame. \
Rahorty
TTograe v Rocora
Rocord auors Tame. athorzsdFom |TGanersiod
SWaiched | subjects —| oignalFom |- S1EMEI9EOMS | oy iType
orgnadinL es normazackom seehso [orginancL.
mitash xmiasn

Descriptions

BibliographicRecord

Represents a bibliographic record. Contains a set of authors, subjects and titles. Also contains a set of AuthorizedAuthors and AuthorizedSubjects, which can be used to retrieve authority records for these items. A flag indicates whether or not matching has been performed. The original XML from which file was imported is saved, along with a hash code to facilitate fast comparisons for duplicate checking.

AuthorityRecord

Represents an authority record. Contains a single authorized form of the name, along with a set of alternate forms and see-also references. The recordType indicates whether it is a MARC, Dublin Core of XC generated record. Like bibliographic records, the original XML along with a hash code is also stored.

AuthorityLink

Links a BibliographicRecord to an AuthorityRecord. Information about the match is also stored here. A related name is used to link this back to a single author or subject in a BibliographicRecord. This should reference a Name directly from the parent BibliographicRecord.

Name

A single name of an author, subject or title. Contains the original form of the name, exactly as it was typed, along with a normalized form.

Constraints

Comparisons between domain objects only use scalar fields, so collections are not examined when equals() is called. This improves performance by allowing all collections to remain lazily-loaded until they are explicitly requested.
Data Persistence

Class Diagram

[image: image5.png]BGgEEREDRD K FacodDED
o s Biostapichecord) [sre(hhortyReca]
L0 eoveBuogapcRom) Vo v Aoty Racors)
Sbicyapricnocor indbyidions) | <865 | Aumoryacrd acByiiLon)
LircEaotapncRocos 1y Lachornyrooors gy |
ncount g

A EAS
oA

ListcAuthorty.io (ngAIFier(F)
Cichuthorty. i indAl).
nrcount)

Descriptions

BibliographicRecordDAO

Responsible for creating updating, loading and removing bibliographic records. A number of finder methods are provided to facilitate searching for records. All operations are cascaded to associated Names and AuthorityLinks, so deleting a BibliographicRecord will also delete associated AuthorityLinks. Only updating is cascaded to AuthorityRecords, so deleting a BibliographicRecord will not delete an AuthorityRecord.

AuthorityRecordDAO

Responsible for creating, updating, loading and removing authority records. A number of finder methods are provided to facilitate searching for records. All operations are cascaded to associated Names, so deleting an AuthorityRecord will also delete any associated Names. For this reason, Name instances should not be shared among AuthorityRecords and other AuthorityRecords, or AuthorityLinks or BibliographicRecords.

AuthorityLinkDAO

Responsible for updating and loading associations between BibliographicRecords and AuthorityRecords. A single finder method is provided which accepts a Filter. Results are filtered, sorted and paginated according to the Filter. Only updated operations are cascaded to Names and AuthorityRecords, since the lifecycle of the related Name is shared with the lifecycle of its parent bibliographic record, and AuthorityRecords have their own lifecycles.

Filter

Contains parameters for retrieving data to be displayed to the user. Boundaries and sorting conditions can be set individually and passed as a single parameter to a DAO for a specific search.

Features

Using Hibernate for data persistence offers many useful features. All collections of associated objects in the domain model are lazily loaded, so they will only be retrieved when they are specifically requested. Database queries are all cached automatically, and objects are only saved if they have actually been modified. Operations automatically cascade among objects, making a really simple interface for modifying data. This also adds a few constraints, listed below.

Constraints and Guidelines

All domain objects are uniquely identified by their ID field. This field is automatically managed by the DAOs. Two domain objects having the same ID are, for all practical purposed, the same object, and they will represent the same row in the database. This is an important consideration when sharing associated objects (such as Names) between higher-level objects like bibliographic records or authority records. BibliographicRecords and AuthorityRecords manage the lifecycles of all directly associated objects, so deleting a bibliographic record will always delete all of the associated Names, whether or not they are being used by another bibliographic record (which is likely to cause an error).

MySQL Data Model

[image: image6.emf]record_types

PK id

name

names

PK id

orig_string

nor_string

authority_records

PK id

processed

generated

xml_hashcode

orig_xml

FK1 record_type_id

FK2 authority_name_id

authority_records_alter_forms

PK,FK1 name

PK,FK2 record_id

authority_records_see_also

PK,FK1 name

PK,FK2 record_id

bib_records

PK id

processed

xml_hashcode

orig_xml

FK1 record_type_id

bib_records_titles

PK,FK1 name

PK,FK2 record_id

bib_records_authors

PK,FK1 name

PK,FK2 record_id

bib_records_subjects

PK,FK1 name

PK,FK2 record_id

authority_records_links

PK id

approved

flagged

rejected

FK1 auth_record_id

FK2 bib_record_id

evidence

time_found

time_verifed

approvedby

percent_confidence

FK3 string_id

bib_records_author_links

PK,FK1 bib_record_id

PK,FK2 auth_link_id

bib_records_subjects_links

PK,FK2 bib_record_id

PK,FK1 auth_link_id

_1231502101.vsd
«subsystem»
Matcher

API

MySQL DB

ReportGenerating

Exporter

DAO (Data Access Object)

-match

GUI

Architecture

«subsystem»
Import

_1231502317.vsd
Importer.import(File f)

Check XML hash for changes

Check hash of key values

Full comparison of unhashed key fields

Stop.
It’s an unchanged duplicate, so it should be ignored.

Full comparison of unhashed file

Make a new record, write it to the DB

Update old record in DB. The older data is overwritten.

No match

match

match

No match

No match

matches

matches

No match

Importing a Record

_1231502189.vsd
Table

_1231417433.vsd
Matcher

+match()

MatchDrive

ConfigFile

+match()

-stringTransformer

MatchStrategy

AuthRecordTemplateMatchStrategy

WebServiceMatchStrategy

*

1

StringTransformer

There are two thresholds in configuration file, auto-accept and auto-reject.

If match result > auto-accept, create links between records.

If auto-accept > match result > auto-reject, mark the record for review.

If match result < auto-reject, disregard the result.

There is also a list of matching strategies.

GenerateMatchStrategy

AuthorizedNameAuthorityRecordMatchStategy

AlternativeNamesAuthorityRecordMatchStrategy

