Report and Analysis of Data

R·I·T Office of Cooperative Education and Career Services

J. Daniel Behun Chris Nurre Juan Obes Michael Yatzkanic

Advisor: Dan Pedersen

Customers:

Manny Contomanolis Jim Bondi

Project Description

- Reporting and analysis of co-op data
- Track student's progress
- Maintain employer listings
- Provide co-op data to other offices

Technologies

- Web Services C# & .NET
- SQL Server 2000
- ASP.NET
- Utilize RIT CAS authentication system

Current System

- System has been in production use since 1999
- Two-tier web application
- Code has become bloated and parts are obsolete
- Productivity is affected by poor system performance
- Architecture limits extensibility and maintainability

Period: 072 + To 072 +
Job Type: Co-op 🕏
Major: ALL Majors APPE APPP APPR *Press Ctl Key to select multiple majors
 ─ Placement only

Sample Query

Context & Deployment

- Users
 - RIT OCECS
 - Internal RIT consumers
 - External RIT consumers
- Deployment
 - Full production use by RIT OCECS

Primary Goals

- Three-tiered architecture using web services
- Must be maintainable and extensible
- Increased speed over existing system
- Implement current system features

Three-Tier Architecture

- Separation of concerns
- Extensible
- Maintainable
- Testable

Satisfying Customer Goals

- Separation of responsibilities
- Easier to extend
- No single library file to modify
- Data is now portable to many platforms

Project Scope

- Scoped to the business tier
 - Developing primary services
 - Maintainability
 - Extensibility
 - Performance
- Presentation tier will be handled by OCECS
- Data tier already in place
 - Implementing database optimizations

Office of Cooperative Education and Career Services

SCRUM Process

- Incremental development
- Allows for work when requirements are not set
- Visibility and communication
- Customer feedback

HOBH & SCRUM

- Product backlog
- Burndown chart
- SCRUM meetings
- Sprint planning/review
- Frequent customer meetings

Process

- Implementation is done in parallel
 - Team web services layer
 - OCECS Presentation layer
- 7 Sprints
 - 1-3 : Design
 - 4-6: Implementation & testing
 - 7 : Project delivery

Requirements Phase

- Analysis of high level architecture helped solidify requirements
- It took time to find the scope of our requirements in customers broad vision of final system

Final Requirements

- Elicitation was more a continual growth of understanding rather than iterations
- 4 Primary Web-Services
- 69 functional requirements of the system
- Requirement volatility has been minimized during the requirements phase

Testing

- Automated testing
 - JMeter
- Accuracy
 - Compare result sets from old system
- Parallel development will act as functional testing

Project Status

- Current
 - Finalized requirements
 - Finished design and architecture
 - End of Sprint 3
- Future / spring quarter
 - Implementation
 - Testing

Metrics

- Effort Metrics
 - Estimation accuracy
- Progress Metrics
 - Slippage
 - Plan accordingly to make sure deadlines are met
- Earned Value
 - Make sure the team is progressing forward

Quality Metrics

- Lines per code per module
- Query response time
 - use results from automated testing to compare improvement

Task Estimation

- Project plan & product backlog list all tasks for each sprint
- Task duration is estimated during sprint planning sessions
- On average, each item ran over 30%

Slippage

- Slippage metrics are important to prevent senioritious from setting in and causing a build up of work near graduation.
- Week 4: Sprints were pushed back by 2 days to add the next weekends to the sprints
 - Done to give extra time after meeting with the Coop office on Thursday
- Sprints overall have not be delayed
 - Items have been shifted around in general between sprints but the planned workload has remained consistent

Earned Value Metrics

- Points are assigned for every item that needs completion
 - Project Plan
 - Architecture Document
 - RequirementsDocument
 - Diagrams
 - Customer Meetings / Interviews

Risks

- Understanding system
- Feature creep
- Parallel development with presentation layer
- Time management
- Senioritis

Reflection

- System learning curve was steep which slowed requirements elicitation
- Creating the architecture helped to understand the system and drove requirement elicitation
- Frequent meetings with customer helped

Questions?