
Examining the Relationship between Security Metrics and
User Ratings of Mobile Apps: A Case Study

Daniel E. Krutz, Nuthan Munaiah, Andrew Meneely, and Samuel A. Malachowsky
{dxkvse,nm6061,axmvse,samvse}@rit.edu

Department of Software Engineering
Rochester Institute of Technology, Rochester, NY, USA

ABSTRACT
The success or failure of a mobile application (‘app’) is largely
determined by user ratings. Users frequently make their app
choices based on the ratings of apps in comparison with sim-
ilar, often competing apps. Users also expect apps to con-
tinually provide new features while maintaining quality, or
the ratings drop. At the same time apps must also be se-
cure, but is there a historical trade-off between security and
ratings? Or are app store ratings a more all-encompassing
measure of product maturity? We used static analysis tools
to collect security-related metrics in 38,466 Android apps
from the Google Play store. We compared the rate of an
app’s permission misuse, number of requested permissions,
and Androrisk score, against its user rating.

We found that high-rated apps have statistically signif-
icantly higher security risk metrics than low-rated apps.
However, the correlations are weak. This result supports
the conventional wisdom that users are not factoring secu-
rity risks into their ratings in a meaningful way. This could
be due to several reasons including users not placing much
emphasis on security, or that the typical user is unable to
gauge the security risk level of the apps they use everyday.

CCS Concepts
•Software and its engineering → Software design trade-
offs;

Keywords
Android, User Ratings, Security

1. INTRODUCTION
Android is the world’s most popular mobile OS [6] with

over 1.9 million apps available from Google Play alone [1].
The success of an Android app is largely dependent on the
user ratings available on the digital storefront. Users expect
apps to continuously provide new features, threatening poor
app store reviews and low ratings if their expectations are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Workshop on App Market Analytics’16, November 14 2016, Seattle, WA,
USA
c© 2016 ACM. ISBN 978-1-4503-4398-5/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2993259.2993260

not met [18]. Apps are a crucial entry point into our digital
lives, and therefore must be secure.

At a glance, one may assume that the challenge of secu-
rity and customer satisfaction are trade-offs, since if devel-
opers focus on new features to keep the ratings up, secu-
rity testing on an ever-increasing codebase may slip. New
security-inspired features may also be perceived by users as
cumbersome or unnecessary, leading to lower ratings. Even
a vulnerability in a dependency can be detrimental to users,
yet many developers may not have the resources or commit-
ment needed to thoroughly inspect a third-party framework
for security concerns. Experts have even warned that se-
curity trade-offs with other properties such as usability and
performance are considered universal [2]. But is this trade-
off historically true in the case of mobile apps? Empirically,
do mobile apps with higher ratings have more potential se-
curity risks? Or, do app store ratings represent a more all-
encompassing measure of customer experience which indi-
cates maturity in all of the properties of an app, with se-
curity being just one aspect? These questions motivated us
to empirically examine the relationship between user rat-
ings and security. To measure potential security risks, we
use automated static analysis tools specifically tailored to
the Android platform. While far from a comprehensive se-
curity audit, the static analysis tools provide a broad and
consistent measure of basic security flaws that might plague
Android apps. We extracted the user ratings of 38,466 An-
droid apps randomly collected from the Google Play app
store.

The objective of this study is to investigate the relation-
ship between potential security risks and customer satisfac-
tion by empirically evaluating Android apps with static anal-
ysis tools. Specifically, we address the following research
question:

RQ Correlation Does average user rating of mobile apps
correlate with security risk?

We found a weak correlation between the security-related
risk metrics collected from an app and its user rating. How-
ever, the separation of the apps into two populations—low-
rated and high-rated—revealed a statistically significant as-
sociation between three of the four security-related risk met-
rics and user rating with high-rated apps being more likely
to have higher values for the security-related risk metrics.

The remainder of this paper is organized as follows: In
Section 2, we discuss related work and in Section 3 we present
the design of our case study, where we explain what tools we
use, what data we collect and how we collect it. In Section 4,
we present the results of our case study and in Section 5, we

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

WAMA’16, November 14, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4398-5/16/11...$15.00

http://dx.doi.org/10.1145/2993259.2993260

8

discuss the threats to validity for our study. Section 6 con-
cludes the paper based on our findings.

2. RELATED WORK
There has been a substantial amount of previous research

analyzing the effects of permissions on the user’s perception
of the app. Lin et al. [20] examined user comfort levels when
using permissions they did not fully understand, or when
they did not comprehend why the app needed the permis-
sion. They found that users generally felt uncomfortable and
may even delete apps when they did not understand why it
requested a permission they deemed unnecessary. Egelman
et al. [8] found that approximately 25% of users were typi-
cally willing to pay a premium in order to use the same app,
but with fewer permissions, while about 80% of users would
be willing to allow their apps more permissions to receive
targeted advertisements if it would save them .99 cents on
the purchase of the app. Contrary to these findings, other
research has argued that users typically pay little attention
to permissions when installing an app, and often do not un-
derstand or care about the precise functionality for most of
the granted permissions [10]. Kelley et al. [16] conducted
semi-structured interviews with Android users, and found
that users paid limited attention to permission screens, and
had poor understanding of what these permissions implied.

Stevens et al. [26] analyzed 10,000 free Android apps and
found a strong sub-linear relationship between the popular-
ity of a permission and the frequency of its misuse. They
found that developers were more likely to misuse a permis-
sion when they did not understand it, and that the popular-
ity of a permission is strongly associated with its misuse. A
powerful method of avoiding permission misuse is through
developer education and community support.

App ratings have demonstrated their importance in other
areas of research as well. Harman et al. [14] found a strong
correlation between the rating and the number of app down-
loads. Linares-Vasquez et al. [21] found that change and
fault-proneness of the APIs used by the apps negatively im-
pacts their user ratings. Khalid et al. [17] examined 10,000
apps using FindBugs and found that warnings such as ‘Bad
Practice’, and ‘Performance’ categories are typically found
in low-rated apps. They found that app developers could
use static analysis tools, such as FindBugs, to repair issues
before users complained about these problems.

There has also been a substantial amount of work regard-
ing the risks of over-permissions in Android apps. Felt et
al. [9] discussed the dangers of app over-permissions includ-
ing unnecessary permissions warnings and exposure to vari-
ous bugs and vulnerabilities. The study also examined 940
Android apps and found that about 33% of them contained
over-permissions.

Grace et al. [13] conducted work on permissions probing,
which is when a 3rd party app attempts to use a permis-
sion in the hope that the attached app has requested them
from the user. This is often done to collect and transmit
potentially sensitive information which should not be nor-
mally available to the 3rd party app. They found that more
than half of all advertisement (ad) libraries try to probe for
open permissions. This could potentially be the cause of an
under-permission in an app since the ad library will try to
use a permission which the developer did not request.

Tian et al. [27] distinguished high and low-rated apps us-
ing various metrics such as code complexity, API quality,

and API dependencies. In their case study of 1,492 low-
rated and high-rated apps, they found the size of the app,
number of promotional images on the app store page, and
the target SDK version to be the most influential factors
affecting the user rating of an app.

3. STUDY DESIGN
We first collected a variety of apps from Google Play us-

ing a custom-built collection tool and then analyzed them
using several well-known Android static analysis tools. An
overview of our collection and analysis process is shown in
Figure 1. We will next describe our data collection, selection
and analysis process.

App Store App
Collection

App
Selection

Static
Analysis

Data
Analysis

Figure 1: App Collection and Analysis Process

3.1 App Collection & Selection
We collected over 70,000 apps from the Google Play store

with a custom-built collector, which uses Scrapy1 as a foun-
dation. In order to gather a diverse set of apps, all apps
were randomly pulled from the Google Play store. We chose
to pull from Google Play since it is the most popular source
of Android apps [12] and was able to provide other app re-
lated information such as the app category, user rating, and
number of downloads, which we stored in a SQLite database.

In order to include only reasonably popular apps in our
study, we excluded all apps with less than 10,000 downloads,
leaving us with 38,466 apps. The minimum and maximum
rating of our collected apps is 1.4 stars and 5 stars. The
average rating of these apps is 3.99 stars and the median is
4.1 stars. Our collection includes apps from 41 different app
categories with ‘Tools’ and ‘Music’ categories accounting for
the highest and lowest number of apps.

To create a group of low-rated, and high-rated apps for
comparison, we next sorted the apps in descending order
based on their average user rating. Using an approach simi-
lar to that used by Tian et al. [27], we separated the sorted
list of apps into two groups :1. high-rated apps, which com-
prised of apps from the top 10% of the sorted list and 2. low-
rated apps, which comprised of apps from the bottom 10% of
the sorted list. Since our data set contained 38,466 apps, the
low and high-rated app groups contained 3,846 apps each.
Figure 2 shows the distribution of number of downloads and
average user rating of apps in these two groups. The me-
dian rating of the low-rated apps is 3.2, while it is 4.6 for
high-rated apps. The median number of downloads for low-
rated apps is 10,000 and is 100,000 for high-rated apps. The
number of downloads metric is the minimum number from
the download range reported on the Google Play store.

3.2 Analysis
The next phase was to analyze the apps for potential se-

curity risks and permissions issues. In addition to using AP-
KParser2 to collect an app’s requested permissions, we used

1http://scrapy.org
2https://github.com/joakime/android-apk-parser

9

Downloads

1e+05

1e+07

Low−rated High−rated

M
e

tr
ic

 V
a

lu
e

 (
L

o
g

 S
c

a
le

)
Avg. User Rating

2

3

4

5

Low−rated High−rated

M
e

tr
ic

 V
a

lu
e

Figure 2: Distribution of Number of Downloads and
Avg. User Ratings of the Low-rated and High-rated
Apps

two open-source static analysis tools in our study: Stow-
away [9] and Androrisk3. Stowaway evaluates the app for
permission misuse, and Androrisk determines the app’s vul-
nerability risk level.

We selected Stowaway for determining permission misuse
since it is able to state the specific permissions that are caus-
ing permissions gaps, while using a static analysis-based ap-
proach that did not require it to be run on an Android device
or through an emulator. Stowaway has also demonstrated
its effectiveness in existing research [9,23,26]. Stowaway ex-
tracted the number of under and over-permissions that are
present in each app. This tool is comprised of two parts:
API calls made by the app are determined using a static
analysis tool, and the permissions needed for each API are
determined using a permissions map. Similar to previous
work [26], we made slight modifications to Stowaway to ac-
commodate our process and stay current with updated An-
droid permissions.

Androrisk determines the security risk level of an appli-
cation by examining several criteria. The first set is the
presence of permissions which are deemed to be more dan-
gerous, such as the ability to access the Internet, manipu-
late text messages, or to make a payment. The second is
the presence of more dangerous sets of functionality in the
app including utilizing a shared library, use of cryptographic
functions, and the presence of the reflection API.

We chose Androrisk for several reasons. The first is that
Androrisk is part of the Androguard library, which has al-
ready been used in a variety of existing research [3, 7, 28].
Since it is a static analysis-based vulnerability detection
tool, Androrisk was quickly able to effectively determine the
risk level of a large number of downloaded apps.

APKParser was used to collect a variety of information
about the app, including its requested permissions. The
primary difference between requested permissions and over-
permissions is that requested permissions are merely those
that the app asks to use, not taking into consideration whether
the app actually needs them or not.

4. RESULTS
In this section, we discuss the motivation, approach, and

findings for our research question. A more detailed discus-
sion of our results is presented in the Discussion Section
§4.2.

3https://code.google.com/p/androguard/

4.1 RQ Correlation
Does average user rating of mobile apps correlate with secu-
rity risk

Motivation: Android developers operate under a permission-
based system where apps must be granted access to various
functionality in order to be used. When an Android app
is created, developers must explicitly declare which permis-
sions the application will require [9], such as the ability to
write to the calendar, send text messages, or access the lo-
cation services. If an app attempts to perform an operation
for which it does not have permission, a SecurityException
will be thrown. For Android versions 1.0 through 5.0, the
user is asked to accept or reject requested permissions when
installing the app. Beginning with Android 6.0, developers
may ask the user to accept permissions at runtime, instead
of only during the installation or upgrade process.

A basic principle of software security is the principle of
least privilege. In the context of mobile apps, it translates
to granting the minimum number of permissions that an app
needs to properly function [25]. Granting more permissions
than the app needs creates unnecessary security vulnerabil-
ities since vulnerabilities in the app (or malware) could use
these extra permissions for malicious reasons. Additionally,
eliminating unnecessary permissions limits potential issues
due to non-malicious developer errors and reduces the app’s
attack surface [22].

Unfortunately, developers often request more permissions
than they actually need, as there is no built in verification
system to ensure that they are only requesting the permis-
sions their app actually uses [9]. Developers misuse permis-
sions for a variety of reasons including lack of understand-
ing about the permissions and inadequate community sup-
port [26]. In this study, we use the term over-permission to
describe a permission setting that grants more than what a
developer needs for the task. Likewise, an under-permission
is a setting for which the app could fail because it was not
given the proper permissions. Over-permissions are consid-
ered security risks and under-permissions are often consid-
ered quality risks [4]. Although an app may require permis-
sions for numerous legitimate purposes, more permissions
increases an app’s attack surface, making it vulnerable to
outside sources [9, 22]. As an example, permissions may be
unknowingly misused in a variety of ways by 3rd party li-
braries or even associated ad networks, potentially collecting
and transmitting sensitive user data [11,13].

Approach: The approach that we used in the analysis
of the data set in the context of our research question was
conducted in two phases: x 1. an exploratory correlation
analysis and 2. a detailed association analysis.

The preliminary exploratory analysis of the relationship
between the average user rating of an app and the security-
related metrics collected from it involved a qualitative and
quantitative correlation test. We used hexagon scatter plots
to qualitatively assess if there is a decipherable pattern in
the relationship between average user rating and one of the
four security-related risk metrics. The qualitative analysis
was then supported with a quantitative analysis using the
Spearman Rank Correlation Coefficient test.

Figure 3 shows the scatter plots of the average user rat-
ing of an app versus each of the four security-related risk
metric considered in our study. The scatter plots, partic-
ularly the trend line shown in blue, reveal no decipherable
linear relationship between the user rating and the security-

10

ρ = 0.074 ρ = 0.0692

ρ = 0.0162 ρ = 0.0209

Permissions # Over Permissions

Under Permissions Androrisk Score

0

30

60

90

0

30

60

90

0

10

20

30

40

50

0

25

50

75

100

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

Avg. User Rating

M
e
tr

ic
 V

a
lu

e

1000

2000

3000

4000

5000

Density

Scatter Plot of Avg. User Rating Versus Security Metrics

Figure 3: Scatter Plot of Avg. User Rating versus The Security-related Risk Metrics

related risk metrics. Spearman’s ρ, also shown in Figure 3,
strengthens the qualitative assessment, revealing a negligi-
ble correlation between the average user rating of an app
and the security-related risk metrics.

Despite the negligible correlation, we attempted to an-
alyze the correlation from an alternative perspective. In
this phase of the correlation analysis, we used the two-sided
Mann-Whitney U (MWU) test to assess the association be-
tween average user rating and the security-related risk met-
rics. In the context of the test, the null hypothesis was that
low and high-rated apps have same distributions for each of
the security-related metrics and the alternate hypothesis is
that low- and high-rated apps have different distributions.
In our analysis, we used an α-value of 0.05 to determine if
the null hypothesis can be rejected or not. If the MWU
test revealed the existence of a statistically significant as-
sociation, we use the mean value of the metric to assess if
the metric is higher or lower for low-rated apps as compared
with that of the high-rated apps.

The results from the MWU test are presented in Table 1
with the statistically significant results having their p-value
shown in boldface. In cases where a result was not statisti-
cally significant (i.e. p-value > 0.05), the comparison of the
mean is shown with a - (dash) in the Table.

Findings: Table 1 indicates that, on average, high-rated
apps typically have more under and over-permissions along
with a higher Androrisk score. We also found that high-

rated apps request more permissions but the result is not
statistically significant.

We next sought to determine if these same results held
true for apps with similar functionality, so we separated the
results by app category choosing the five most commonly
occurring groups from our collected apps. Based on this
grouping, we found that apps in these categories generally
conform to our overall results of high-rated apps containing
more possible security vulnerabilities. Although not statis-
tically significant in all groups, our findings show that high-
rated apps are not using many of the permissions they ask
for, which is quite dangerous as this leaves the software much
more prone to vulnerabilities [22, 25]. The results also indi-
cate that high-rated apps contain more under-permissions.
This problem not only indicates quality issues, but could also
indicate that these apps may contain functionality which is
probing for open or available permissions [11,13].

An interesting observation was that low-rated apps in the
Tools category were likely to have more permission requests
that their high-rated counterparts. The permission gap, on
the other hand, remained consistent with our overall obser-
vation. With the exception of the number of permissions,
the results for apps in the Entertainment, Education, and
Personalization categories were consistent with the overall
results but were statistically insignificant.

11

Table 1: Analysis Results from the Mann-Whitney U Test between a Population of Low-rated and High-rated
Apps

Category (# Apps) Analysis
Greater In

p-value
Low-rated High-rated

All (38,466)

Permissions - - 1.8535e-01

Over-Permissions X 4.0228e-19

Under-Permissions X 8.5155e-14

Androrisk Score X 5.1075e-07

Tools (4,282)

Permissions X 7.8488e-06

Over-Permissions X 5.4668e-03

Under-Permissions X 6.8640e-04

Androrisk Score - - 6.1945e-01

Entertainment (2,711)

Permissions - - 1.3624e-01

Over-Permissions - - 1.8075e-01

Under-Permissions X 5.1918e-08

Androrisk Score - - 7.5794e-02

Education (2,381)

Permissions - - 3.0089e-01

Over-Permissions - - 6.5054e-02

Under-Permissions X 1.0815e-04

Androrisk Score X 1.5559e-03

Personalization (2,049)

Permissions - - 3.2993e-01

Over-Permissions - - 2.8604e-01

Under-Permissions - - 7.5454e-01

Androrisk Score - - 9.2943e-01

Puzzle (1,908)

Permissions - - 2.1130e-01

Over-Permissions - - 6.4384e-02

Under-Permissions X 1.2566e-04

Androrisk Score X 4.4567e-06

To answer our primary research question, our data sug-
gests that:

High-rated apps have higher security risk metrics (more
risk) than low-rated apps. However, there is no correlation
between the rating of Android apps and the security risk
metrics.

4.2 Discussion
In this section, we examine and provide some possible

explanations for our findings.

What are some possible explanations for our find-
ings?

There are several plausible explanations for high-rated
apps to have a higher security risk. The first, as was ev-
idenced in the association analysis, is that high-rated apps,
on average, request a larger number of permissions, and
therefore have a high chance of containing under and over

privileges. However, several of the top 5 collected categories
actually requested fewer permissions in high-rated apps com-
pared to low-rated apps, while still suffering from a higher
rate of under and over-privileges, along with having larger
Androrisk scores. This contradicts the argument that high-
rated apps suffer from more vulnerabilities merely because
they request more permissions.

Our low-rated apps had a median number of 10,000 down-
loads, while high-rated apps in our collection had a median
number of 100,000 downloads. Unfortunately, we did not
examine the life cycle of apps, but one possibility is that
the apps with more downloads could be older apps, and
may have more downloads simply because they have been
around longer. Previous research has found that apps are
much more likely to add permissions, than remove them with
each version update [29].

Our static analysis tools examined the entire app, includ-
ing the libraries used within the app. They do not differen-
tiate between the code in the libraries, and the source code

12

written by the developers. This means that any discover-
ies by our tools could either come from the app’s code, or
the included libraries. Previous work has found that higher
rated apps have more dependence on libraries [24], so it is
quite possible that the discovered issues have more to do
with these libraries than the actual code.

Although we offer some potential explanations for our
findings, we believe that our work has demonstrated the
need for future research in this area.

Does it mean that high-rated apps are less secure?

Possibly. A primary way that over-permissions make an
application less secure is that they increase the attack sur-
face [9,22], thus making it more susceptible to malware and
other vulnerabilities. However, identifying actual vulnera-
bilities using any static analysis tool is a difficult task, as
these tools only look for potential vulnerabilities [5]. Our
findings may only conclude that high-rated apps have a
higher rate of potential vulnerabilities, and request more
permissions in comparison to low-rated apps. Additionally,
we found only a weak correlation between the rating of an
app and potential vulnerabilities.

5. LIMITATIONS & FUTURE WORK
While we feel that our findings are profound, they are

not without their limitations. Although Google Play is the
largest source of Android apps, it is not the only location for
attaining Android apps. Alternatives include the Amazon
app store4, F-Droid5, and many other sources; other studies
may choose to include apps from these locations. Addi-
tionally, we only examined a total of 38,466 apps, which is
a small minority of the over 1.9 million available Android
apps [1]. However, given that this is a random sample we
believe that it is representative of the Android application
population. Future work could be done to include paid apps
in a similar analysis since we only examined free apps.

While static analysis tools have demonstrated their value
in numerous previous works [9, 23], no static analysis tool
is perfect and often inherently contains limitations [5]. Al-
though Stowaway is a powerful static analysis tool which
has been used in previous research [15, 23], it does suffer
from drawbacks; Stowaway’s own authors state that the tool
only achieves 85% code coverage [9], so the misused permis-
sions reported by this tool are imperfect. Additionally, any
reported vulnerabilities by a static analysis tool should be
deemed as possible vulnerabilities, not actual vulnerabilities,
since the only way of identifying an actual vulnerability is
through manual analysis and verification [5].

Identifying possible vulnerabilities or security risks is ex-
tremely difficult, and like any static analysis tool, Androrisk
is only capable of making educated observations about the
risk level of an app. More substantial risk assessments re-
quire a far more analysis, which would likely include a man-
ual investigation of the app. Due to the large number of
examined apps in our study, this thorough level of analysis
was not practical. Even with almost certain imperfections,
we believe that Androrisk was a good choice due to its ability
to quickly analyze apps and its use in existing research [19].

In our evaluation, we only measured the quantitative user
ratings of apps. Future work could examine the text, look-

4http://www.amazon.com/mobile-apps/b?node=
2350149011
5https://f-droid.org/

ing for security or permissions complaints in apps which have
more possible vulnerabilities, more permissions, or more over-
permissions. A similar analysis to previous work [17] may be
conducted which could include a keyword frequency analysis
or other techniques for user review.

We only analyzed pre-Android 6.0 apps since relatively
few Android 6.0 apps were available for analysis. Android
6.0 received a massive permissions overhaul and future work
could examine how this new release affects developers use of
permissions and how customers perceive these apps.

The permission gap was used as a metric to evaluate po-
tential vulnerabilities in apps. However, it is important to
note that over-privileges only represent possible app vulner-
abilities. Additionally, end users will be very unlikely to de-
tect these as vulnerabilities and will frequently believe that
they are needed by the app.

Our study only measured one quality aspect of an app,
some of its security metrics. However, users are likely to
include numerous factors of an app into their final rating
including defects and functionality. Future work may be
done to use tools such as JLint6 or Findbugs7 to provide a
more well robust evaluation of the app.

Apps may also have invocations to the Android API in
dead code, as it is often the case. This is very common
since apps use external libraries that might offer many more
functionality than the one the app uses. This means that
reported over-privileges may not actually be located in code
that is actually accessible by the app. When comparing our
results, we only looked at the aggregate results of each tool.
For example, we did not break down the results based on the
individual metrics used to create the aggregate AndroRisk
score and did not examine which specific over-permissions
might correlate to lower user reviews.

6. CONCLUSION
Our goal was to determine if low-rated apps suffered from

more possible security risks than high-rated apps. We stat-
ically analyzed 38,466 Android apps using APKParser for
permission usage information, Stowaway for under- and over-
permission information, and Androrisk for a generic security
risk assessment. According to several static analysis tools,
we found that high-rated apps had a greater permissions
gap, and a higher Androrisk score. While statistically sig-
nificant, the correlations are very weak.

7. REFERENCES
[1] Appbrain stats. http://www.appbrain.com/stats/

number-of-android-apps.

[2] Building Secure Software: How to Avoid Security
Problems the Right Way. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[3] A. Atzeni, T. Su, M. Baltatu, R. D’Alessandro, and
G. Pessiva. How dangerous is your android app?: An
evaluation methodology. In Proceedings of the 11th
International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services,
MOBIQUITOUS ’14, pages 130–139, ICST, Brussels,
Belgium, Belgium, 2014. ICST (Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering).

6http://jlint.sourceforge.net
7http://findbugs.sourceforge.net

13

[4] A. Bartel, J. Klein, M. Monperrus, and Y. L. Traon.
Static analysis for extracting permission checks of a
large scale framework: The challenges and solutions
for analyzing android. IEEE Transactions on Software
Engineering, 40(6):617–632, June 2014.

[5] B. Chess and G. McGraw. Static analysis for security.
IEEE Security & Privacy, (6):76–79, 2004.

[6] J. Edwards. iphone lost market share to android in
every major market except one.
http://www.businessinsider.com/apple-ios-v-

android-market-share-2016-1?r=UK&IR=T, Jan 2016.

[7] M. Egele, D. Brumley, Y. Fratantonio, and
C. Kruegel. An empirical study of cryptographic
misuse in android applications. In Proceedings of the
2013 ACM SIGSAC Conference on Computer
Communications Security, CCS ’13, pages 73–84, New
York, NY, USA, 2013. ACM.

[8] S. Egelman, A. P. Felt, and D. Wagner. Choice
architecture and smartphone privacy: There’s a price
for that. In In Workshop on the Economics of
Information Security (WEIS), 2012.

[9] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In
Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS ’11, pages
627–638, New York, NY, USA, 2011. ACM.

[10] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: User attention,
comprehension, and behavior. In Proceedings of the
Eighth Symposium on Usable Privacy and Security,
SOUPS ’12, pages 3:1–3:14, New York, NY, USA,
2012. ACM.

[11] X. Gao, D. Liu, H. Wang, and K. Sun. Pmdroid:
Permission supervision for android advertising. In
Reliable Distributed Systems (SRDS), 2015 IEEE 34th
Symposium on, pages 120–129, Sept 2015.

[12] J. Giggs. The ultimate app store list.
http://www.businessofapps.com/the-ultimate-

app-store-list/, Feb. 2015.

[13] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi.
Unsafe exposure analysis of mobile in-app
advertisements. In Proceedings of the Fifth ACM
Conference on Security and Privacy in Wireless and
Mobile Networks, WISEC ’12, pages 101–112, New
York, NY, USA, 2012. ACM.

[14] M. Harman, Y. Jia, and Y. Zhang. App store mining
and analysis: Msr for app stores. In Mining Software
Repositories (MSR), 2012 9th IEEE Working
Conference on, pages 108–111, June 2012.

[15] J. Jeon, K. K. Micinski, J. A. Vaughan, N. Reddy,
Y. Zhu, J. S. Foster, and T. Millstein. Dr. android and
mr. hide: Fine-grained security policies on unmodified
android. 2011.

[16] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung,
N. Sadeh, and D. Wetherall. A conundrum of
permissions: Installing applications on an android
smartphone. In Proceedings of the 16th International
Conference on Financial Cryptography and Data
Security, FC’12, pages 68–79, Berlin, Heidelberg, 2012.
Springer-Verlag.

[17] H. Khalid, M. Nagappan, and A. E. Hassan.
Examining the relationship between findbugs warnings

and end user ratings: A case study on 10,000 android
apps. In IEEE Software Journal, 2014.

[18] H. Khalid, E. Shihab, M. Nagappan, and A. Hassan.
What do mobile app users complain about? a study on
free ios apps. IEEE Software, 99(PrePrints):1, 2014.

[19] D. E. Krutz, M. Mirakhorli, S. A. Malachowsky,
A. Ruiz, J. Peterson, A. Filipski, and J. Smith. A
dataset of open-source android applications. In Mining
Software Repositories (MSR), 2015 IEEE/ACM 12th
Working Conference on, pages 522–525. IEEE, 2015.

[20] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist,
and J. Zhang. Expectation and purpose:
Understanding users’ mental models of mobile app
privacy through crowdsourcing. In Proceedings of the
2012 ACM Conference on Ubiquitous Computing,
UbiComp ’12, pages 501–510, New York, NY, USA,
2012. ACM.

[21] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas,
M. Di Penta, R. Oliveto, and D. Poshyvanyk. Api
change and fault proneness: A threat to the success of
android apps. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 477–487, New York, NY,
USA, 2013. ACM.

[22] P. Manadhata and J. Wing. An attack surface metric.
Software Engineering, IEEE Transactions on,
37(3):371–386, May 2011.

[23] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner.
Addroid: Privilege separation for applications and
advertisers in android. In Proceedings of the 7th ACM
Symposium on Information, Computer and
Communications Security, ASIACCS ’12, pages 71–72,
New York, NY, USA, 2012.

[24] I. M. Ruiz, M. Nagappan, B. Adams, T. Berger,
S. Dienst, and A. Hassan. On the relationship between
the number of ad libraries in an android app and its
rating. IEEE Software, 99(1), 2014.

[25] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 63(9):1278–1308, 1975.

[26] R. Stevens, J. Ganz, V. Filkov, P. Devanbu, and
H. Chen. Asking for (and about) permissions used by
android apps. In Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR ’13,
pages 31–40, Piscataway, NJ, USA, 2013. IEEE Press.

[27] Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan.
What are the characteristics of high-rated apps? a
case study on free android applications. In Software
Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on, pages 301–310. IEEE,
2015.

[28] T. Vidas, J. Tan, J. Nahata, C. L. Tan, N. Christin,
and P. Tague. A5: Automated analysis of adversarial
android applications. In Proceedings of the 4th ACM
Workshop on Security and Privacy in Smartphones
& Mobile Devices, SPSM ’14, pages 39–50, New
York, NY, USA, 2014. ACM.

[29] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos.
Permission evolution in the android ecosystem. In
Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC ’12, pages 31–40,
New York, NY, USA, 2012. ACM.

14

