
1

Version Control Systems

Motivation

Members of a software development group need to:

• have access to the group source code (file sharing)
• work at the same time on the same files (concurrent editing)
• keep track of different versions of the same file (history)

A Version Control System is a special file server, designed for
concurrent editing and to store history information.

2

Concurrent Editing

Why is concurrent editing difficult?

A normal file server (eg. NFS) can provide file sharing, but
would keep only one version of each file (the most recent one).

diagram by Brian W. Fitzpatrick, C. Michael Pilato, Copyright © 2000, 2001, 2002, 2003, 2004 CollabNet, Inc.

Lock-Modify-Unlock

A simple mechanism to support concurrent editing:

The same mechanism can be used to implement multi-threaded
access to shared resources.

diagram by Brian W. Fitzpatrick, C. Michael Pilato, Copyright © 2000, 2001, 2002, 2003, 2004 CollabNet, Inc.

3

Lock-Modify-Unlock

Disadvantages of this scheme:

• delays: locking a file prevents concurrent editing

• administrative overhead: if a user forgets to release the files he
has locked, an administrator has to manually remove the lock
before another user can edit the files.

• false sense of security: locking a single file is not sufficient if
there are other files depending on it

Copy-Modify-Merge

A better mechanism:

diagram by Brian W. Fitzpatrick, C. Michael Pilato, Copyright © 2000, 2001, 2002, 2003, 2004 CollabNet, Inc.

4

Copy-Modify-Merge

When merging, two types of changes to a file can occur

• changes that do not overlap: in this case merging is trivial - just take the
sum of changes

• changes that overlap: in this case there is a conflict and merging can be
difficult - users must communicate to decide which changes to propagate to
the new version.

Merging is a manual process by the user
(No AI available yet to decide which changes to take).

The amount of time it takes to resolve conflicts is far less than the time lost
by a locking system.

Available Version Control Systems

• CVS (www.cvshome.org): open source, wide-spread,
problems when removing and renaming files.

• Subversion (subversion.tigris.org): open source, the successor
of CVS

• BitKeeper (www.bitkeeper.com): closed source, used in linux
kernel development

• … others?

5

Brief Intro to Subversion

Programing II (CS104):
• https://subversion.cs.unibas.ch/repos/ss04/cs104/g1

Clients:
• svn (Linux)
• Tortoise (Windows)

Subversion Architecture

Repository Access URLs:
• file:///
• http:// + https://
• svn://

6

What is it?

The repository is a centralized store for data:

• Stores data in form of a filesystem tree
• Provides read/write access to the stored data
• Remembers any modification made to it

Repository

Working Copy

What is it?

The working copy is made up of two parts:
• a local copy of the directory tree of a project
• an administrative directory named .svn in each directory,
storing version control information

Notes:
• Users edit their working copy locally.
• Changes are then committed to the repository.
• After a commit, all other users can access the changes by
updating their working copies to the latest revision.

7

Administrative Information

Information stored in .svn directories:

For each file, Subversion stores:
• the working revision of the file
• a timestamp of the last update of the file

Based on this information, Subversion can determine the state of
the file (shown by the status command):
• if changes have been committed (an update will change the
working copy)
• if changes have been made in the working copy (a commit will
change the repository)

Basic Commands on Linux (svn)

checkout - Get an initial working copy of a project. Eg.:
svn checkout file:///path/to/repos/aproject

commit - Transfer local changes to the repository. Eg.:
svn commit -m "changes description" changed.java

update - Apply changes committed by others to own working copy. Eg:
svn update outofdate.java

add - Add a new file or directory to the repository. Eg.:
svn add newfile.java

help - Explains available commands Eg:
svn help
svn help add

8

Basic Commands on Windows (TortoiseSVN)

Basic Commands on Windows (TortoiseSVN)

9

Revisions

What is it?

A revision is the state of the filesystem tree after a commit.

• The state of the repository after each commit is called a revision.
• To each revision, a natural number is assigned which identifies
the revision uniquely.
• Revision numbers always increase, starting from 0.

Notes:
• revisions are assigned to the whole tree: a certain file can be
left unchanged through different revisions
• files in the repository have always the same revision
• files in the working copy might have different revisions

Branches

What is it?

What are they good for?
• Branches are usually used to try out new features without disturbing the main
branch of development with compiler errors and bugs
• As soon as the new feature of the branch is stable enough the branch is
merged back into the main branch (the trunk) and removed

Branches:
• A Branch is an independent line of development that shares a common
history with another line of development
• It begins life as a copy of something and moves on from there generating
its own history

10

Tags

What is it?

• To save the state of a project that one later wants to refer to

• A tag is a snapshot of a project in time, E.g. each repository revision is a
tag - a snapshot of the filesystem after each commit.
• To make it easier to remember snapshots, Tags get human-friendly names
like „release-1.0“.
• Like Branches, Tags are created as copies of something

What are they good for?

Branches and Tags continued

Do they differ?

• No, not really. For Subversion Branches and Tags are the same - they are
directories in the filesystem and handled in the same way.

• From a user perspective yes - Branches are lines of development. That
means, you make changes to them. Tags are used to fixate a certain state of
your development, so you should not commit to a Tag - although you could
do that.

11

Programming II (CS104)

Repository Layout

• Trunk - Here the main development takes place

• Branches - Here you create Branches from Trunk

• Tags - Here you create Tags from Trunk

Each Group has its own toplevel directory that only the team
members have access to.

Example: Project directory of group g1 is

https://subversion.cs.unibas.ch/repos/ss04/cs104/g1/

Within each of the group directories three subdirectories
exist for software development:

12

• Checkout a working copy
% svn checkout https://subversion.cs.unibas.ch/repos/ss04/cs104/demo // Note the https:// ...
A demo/trunk
A demo/branches
A demo/tags
Checked out revision 7.
% cd demo/trunk

Example Work Cycle on Linux (Part 1)

• Commit changes
% cd ..
% pwd
demo/trunk
% svn commit -m „Started project documentation“ // commit doc and index.html to repository
Adding trunk/doc
Adding trunk/doc/index.html
Transmitting file data .
Committed revision 8.

• Make changes
Create a directory and a new file

% svn mkdir doc // create directory doc and schedule it for addition to repository
A doc
% cd doc
% vi index.html // create a new file
% svn add index.html // schedule the new file for addition to repository
A index.html

Example Work Cycle (Part 2)

• Update the working copy
Update all files and directories to the most current version

% svn update

% svn update -r 3

Go to a particular older revision for all files and directories

• check log messages

% svn log

13

Linux:
Download latest tarball from http://subversion.tigris.org/project_packages.html

tar xzvf subversion-1.0.1.tar.gz

cd subversion-1.0.1

./configure --without-apache --without-apxs --with-ssl --enable-shared --enable-static

make install

Windows: TortoiseSVN
Download MSI Installer from http://tortoisesvn.tigris.org/download.html

Subversion Client Installation

General: http://svnbook.red-bean.com/

Windows specific: http://tortoisesvn.tigris.org/docs.html

Commandline Help:
svn help // List available commands
svn help <command> // Help and argument list

// for <command>

Documentation

