Design Patterns

Introduction to Patterns

= The recurring aspects of designs are calstyn patterns.
= A pattern is the outline of a reusable solution to a
general problem encountered in a particular context
= Many of them have been systematically documented fo
all software developers to use
= A good pattern should
= Be as general as possible

= Contain a solution that has been proven to effelitigolve the
problem in the indicated context.

Sudying patterns is an effective way to learn from the
experience of others

Software Engineering | — SE361

Motivation for Design Patterns

= Most software systems contain certain common aspect
that are frequently reinvented for each system

= Solutions to these common problems may vary inityual
from system to system

= Design patterns seeks to communicate these classic
solutions in an easy to understand manner

Software Engineering | — SE361

What are Design Patterns?

= Design Patterns communicate solutions to common
programming problems

= The seminal book on design patterssign Patterns,
Elements of Reusable Object-Oriented Software by
Gamma et al, identifies three categories of degajterns
= Creational
= Structural
= Behavioral

Software Engineering | — SE361

Pattern description

Context:

. The general situation in which the pattern applies
Problem:

= A short sentence or two raising the main difficulty
Forces.

. The issues or concerns to consider when solvingithiglem
Solution:

. The recommended way to solve the problem in thergoontext.
‘to balance the forces’

Antipatterns: (Optional)

Solutions that are inferior or do not work in thntext.
Related patterns. (Optional)

Patterns that are similar to this pattern.
References:

Who developed or inspired the pattern.

Software Engineering | — SE361

The Singleton Pattern

= Context:

= It is very common to find classes for which onlyeanstance
should exist §ingleton)

= Problem:
=« How do you ensure that it is never possible totere@ore than
one instance of a singleton class?
= Forces

= The use of a public constructor cannot guaranteenth more
than one instance will be created.

= The singleton instance must also be accessiblé ¢taases
that require it

Software Engineering | — SE361

Singleton
= Solution:

«Singleton»

thelnstance

getinstance

Company

if (theCompany==null)
theCompany theCompany= new Company();
Company «private»
getlnstance return theCompany;

Software Engineering | — SE361

The Controller Facade Pattern

= Context:
« Often, an application contains several complex pgek.

= A programmer working with such packages has to pdate many
different classes

= Problem:
= How do you simplify the view that programmers ha¥@ complex
package?
= Forces:
= Itis hard for a programmer to understand and nsenéire subsystem

« If several different application classes call methoof the complex
package, then any modifications made to the packatjeecessitate a
complete review of all these classes.

Software Engineering | — SE361

Facade

= Solution:
«Facade» «PackageClass1»
«PackageClass2»
«PackageClass3»

Airline * | RegularFlight

findFlight

makeBooking *

deleteBooking Person

Software Engineering | — SE361

The Observer Pattern

= Context:

= When an association is created between two classespde
for the classes becomes inseparable.

=« If you want to reuse one class, then you also haveuse the
other.

= Problem:

= How do you reduce the interconnection between efgss
especially between classes that belong to diffaredules or
subsystems?

= Forces:

= You want to maximize the flexibility of the systdmthe
greatest extent possible

Software Engineering | — SE361

Observer

= Solution:
«Observable» | . , | «interface»
«Observer»
addObserver
notifyObservers uzglte
«ConcreteObservable» «ConcreteObserver»
Observable |* * | «interface»
Observer
Lﬁ Observers are & Z%
notified when a new
Forecaster prediction is ready WeatherViewer

Software Engineering | — SE361

Observer

= Antipatterns:

= Connect an observer directly to an observable ab th
they both have references to each other.
= Observers “poll” observables for changes
= Observerables “call” update methods directly

= Make the observesibclasses of the observable.

Software Engineering | — SE361

Pattern Difficulties and Risks

= Patternsarenot a panacea:
= Whenever you see an indication that a pattern shde
applied, you might be tempted to blindly apply thattern.
However this can lead to unwise design decisions .
= Resolution:

= Always understand in depth the forces that need to be
balanced, and when other patterns better balance the forces.

= Make sure you justify each design decision carefully.

Software Engineering | — SE361

Pattern Difficulties and Risks

= Developing patternsishard
= Writing a good pattern takes considerable work.
= A poor pattern can be hard to apply correctly

= Resolution:

= Do not write patterns for othersto use until you have
considerable experience both in software design and in the use
of patterns.

= Take an in-depth course on patterns.

= Iteratively refine your patterns, and have them peer reviewed
at each iteration.

Software Engineering | — SE361

= The application of “well-known” design patterns that
promote loosely coupled, highly cohesive designs.

= Conversely, identify the existence of recurrinegative
solutions — AntiPatterns

= AntiPattern : use of a pattern in an inappropriatetext.

Evaluating Designs

= Refactoring : changing, migrating an existing solut

(antipattern) to another by improving the structof¢he
solution.

Software Engineering | — SE361

Design Patterns

Prablem + Solution Pairs

Problem

& Context & Forces

Benefits

¥

Solution

Consequences

Related Patterns

AntiPatterns

Sofigion + Soluiion Pairs

Contextual Causes

AntiPattern
Solution

Symptoms & Consequences

Refactored
Solution

Benefits Consequences

Related Patterns & AntiPatterns

MITRE

Software Engineering | — SE361

*Slides from MITRE organization : www.mitre.org

Developenent AntiPaitem:

The Blob

Liarsry_lan_tortal

Co_Irwentony
Chick_ULE_tt el
Chidi_in_lbom]

The Library Bleb

PELSEr Calclste Late Fine

Name

User Il

l_cma_Dut Currenl_Crlaluy

Fines Current_tten

- Lzer |0 [Catalo
Fine_2Amourt [Cataleg
He. ~—{ Teplc
Im=arioty.

S
MITRE

Software Engineering | — SE361

Developmest AntiPaiter:

The Blob

+ Symptoms
* Single class withmany
ariributes & operations
« Controller class with
simpl, data-object \
classes.
« Lack of OO design.
+ A migrated legacy
design

+ Consequences
+ Tost OO0 advantage
« Too complex to reusc or
test
« Fxpensive to load

MITRE

Software Engineering | — SE361

Develvprent AndPauer:

The Blob - Refactoring

Library_hialn_Can

Step 1:
|dentify or calegorize e,
related aftributes and [E=ile

operations according
to contracts.

Person
Mame
User |0
Items_Cut Current_Catalog
Fires Criret_lter
_ \ Eﬁg__l‘?n aurt Catsloy
Ct=. ~TupL
Irert oy
.
@ Software Engineering | — SE361
Developewnt AntiPaitem: remove
- far-couaing
The Blob - Refactoring

—ibatary_hdain_ic
Final Step: I
Remove all transient
associations, replacing
them as appropriate
with type specifiers to
attributes and

A

operations arguments

Surer;_Cataog
Zurrerr_Item
gt |D
Sime_Mmouant
cte

o=
> Coltaolcgs

@ Software Engineering | — SE361

10

Development AntiPaiterm:

The Blob Refactored

Person

Nams
User_I0H
fteres _Out
Finz=

Library_hiain _Contwal

fem Mo
Do_ Inentosy b
s ach_Latlogl Fzrams) Lheck_Ut_fte
Prire Cherk_h_Fem
Open_Library Adi_ftam
Izsue “Library_car: Delfe_ten
Falil=e _|ate_Fine Frit_kam
Find_ftem
Title
ISBH
Suthor
Publisher
Lozt
Date_hn
Uty
.
T
i —_—
Lurent_tem
H=er_IN -
Fine_#Anount -N_‘___‘ L=l
B, Brt_Latziog Checked_Uut_ftem
Sort_Catakg B s
Liz Taahgs Chedk_ln
Archive _Ca@Elgs
7 tan
Topic Oue_Oate
ey Hader

MITRE

Software Engineering | — SE361

11

