Design Patterns

Introduction to Patterns

= The recurring aspects of designs are calstyn patterns.
= A pattern is the outline of a reusable solution to a
general problem encountered in a particular context
= Many of them have been systematically documented fo
all software developers to use
= A good pattern should
= Be as general as possible

= Contain a solution that has been proven to effelitigolve the
problem in the indicated context.

Sudying patterns is an effective way to learn from the
experience of others
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Motivation for Design Patterns

= Most software systems contain certain common aspect
that are frequently reinvented for each system

= Solutions to these common problems may vary inityual
from system to system

= Design patterns seeks to communicate these classic
solutions in an easy to understand manner
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What are Design Patterns?

= Design Patterns communicate solutions to common
programming problems

= The seminal book on design patterssign Patterns,
Elements of Reusable Object-Oriented Software by
Gamma et al, identifies three categories of degajterns
= Creational
= Structural
= Behavioral
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Pattern description

Context:

. The general situation in which the pattern applies
Problem:

= A short sentence or two raising the main difficulty
Forces.

. The issues or concerns to consider when solvingithiglem
Solution:

. The recommended way to solve the problem in thergoontext.
‘to balance the forces’

Antipatterns: (Optional)

Solutions that are inferior or do not work in thntext.
Related patterns. (Optional)

Patterns that are similar to this pattern.
References:

Who developed or inspired the pattern.
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The Singleton Pattern

= Context:

= It is very common to find classes for which onlyeanstance
should exist §ingleton)

= Problem:
=« How do you ensure that it is never possible totere@ore than
one instance of a singleton class?
= Forces

= The use of a public constructor cannot guaranteenth more
than one instance will be created.

= The singleton instance must also be accessiblé ¢taases
that require it
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Singleton
= Solution:

«Singleton»

thelnstance

getinstance

Company

if (theCompany==null)
theCompany theCompany= new Company();
Company «private»
getlnstance return theCompany;

Software Engineering | — SE361

The Controller Facade Pattern

= Context:
« Often, an application contains several complex pgek.

= A programmer working with such packages has to pdate many
different classes

= Problem:
= How do you simplify the view that programmers ha¥@ complex
package?
= Forces:
= Itis hard for a programmer to understand and nsenéire subsystem

« If several different application classes call methoof the complex
package, then any modifications made to the packatjeecessitate a
complete review of all these classes.
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Facade

= Solution:
«Facade» «PackageClass1»
«PackageClass2»
«PackageClass3»

Airline * | RegularFlight

findFlight

makeBooking *

deleteBooking Person

Software Engineering | — SE361

The Observer Pattern

= Context:

= When an association is created between two classespde
for the classes becomes inseparable.

=« If you want to reuse one class, then you also haveuse the
other.

= Problem:

= How do you reduce the interconnection between efgss
especially between classes that belong to diffaredules or
subsystems?

= Forces:

= You want to maximize the flexibility of the systdmthe
greatest extent possible
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Observer

= Solution:
«Observable» | . , | «interface»
«Observer»
addObserver
notifyObservers uzglte
«ConcreteObservable» «ConcreteObserver»
Observable |* * | «interface»
Observer
Lﬁ Observers are & Z%
notified when a new
Forecaster prediction is ready WeatherViewer
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Observer

= Antipatterns:

= Connect an observer directly to an observable ab th
they both have references to each other.
= Observers “poll” observables for changes
= Observerables “call” update methods directly

= Make the observesibclasses of the observable.
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Pattern Difficulties and Risks

= Patternsarenot a panacea:
= Whenever you see an indication that a pattern shde
applied, you might be tempted to blindly apply thattern.
However this can lead to unwise design decisions .
= Resolution:

= Always understand in depth the forces that need to be
balanced, and when other patterns better balance the forces.

= Make sure you justify each design decision carefully.
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Pattern Difficulties and Risks

= Developing patternsishard
= Writing a good pattern takes considerable work.
= A poor pattern can be hard to apply correctly

= Resolution:

= Do not write patterns for othersto use until you have
considerable experience both in software design and in the use
of patterns.

= Take an in-depth course on patterns.

= Iteratively refine your patterns, and have them peer reviewed
at each iteration.
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= The application of “well-known” design patterns that
promote loosely coupled, highly cohesive designs.

= Conversely, identify the existence of recurrinegative
solutions — AntiPatterns

= AntiPattern : use of a pattern in an inappropriatetext.

Evaluating Designs

= Refactoring : changing, migrating an existing solut

(antipattern) to another by improving the structof¢he
solution.
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Design Patterns

Prablem + Solution Pairs

Problem

& Context & Forces

Benefits

¥

Solution

Consequences

Related Patterns

AntiPatterns

Sofigion + Soluiion Pairs

Contextual Causes

AntiPattern
Solution

Symptoms & Consequences

Refactored
Solution

Benefits Consequences

Related Patterns & AntiPatterns

MITRE
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Developenent AntiPaitem:

The Blob
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Developmest AntiPaiter:

The Blob

+ Symptoms
* Single class withmany
ariributes & operations
« Controller class with
simpl, data-object  \
classes.
« Lack of OO design.
+ A migrated legacy
design

+ Consequences
+ Tost OO0 advantage
« Too complex to reusc or
test
« Fxpensive to load

MITRE
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Develvprent AndPauer:

The Blob - Refactoring
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Developewnt AntiPaitem: remove
- far-couaing
The Blob - Refactoring
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Development AntiPaiterm:

The Blob Refactored
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