
1

Design Patterns

Software Engineering I – SE361

Introduction to Patterns

� The recurring aspects of designs are called design patterns.
� A pattern is the outline of a reusable solution to a

general problem encountered in a particular context
� Many of them have been systematically documented for

all software developers to use
� A good pattern should

� Be as general as possible
� Contain a solution that has been proven to effectively solve the

problem in the indicated context.

Studying patterns is an effective way to learn from the
experience of others

2

Software Engineering I – SE361

Motivation for Design Patterns

� Most software systems contain certain common aspects
that are frequently reinvented for each system

� Solutions to these common problems may vary in quality
from system to system

� Design patterns seeks to communicate these classic
solutions in an easy to understand manner

Software Engineering I – SE361

What are Design Patterns?

� Design Patterns communicate solutions to common
programming problems

� The seminal book on design patterns, Design Patterns,
Elements of Reusable Object-Oriented Software by
Gamma et al, identifies three categories of design patterns
� Creational
� Structural
� Behavioral

3

Software Engineering I – SE361

Pattern description
Context:

• The general situation in which the pattern applies

Problem:
� A short sentence or two raising the main difficulty.

Forces:
• The issues or concerns to consider when solving the problem

Solution:
• The recommended way to solve the problem in the given context.

— ‘to balance the forces’

Antipatterns: (Optional)
• Solutions that are inferior or do not work in this context.

Related patterns: (Optional)
• Patterns that are similar to this pattern.

References:
• Who developed or inspired the pattern.

Software Engineering I – SE361

The Singleton Pattern

� Context:
� It is very common to find classes for which only one instance

should exist (singleton)

� Problem:
� How do you ensure that it is never possible to create more than

one instance of a singleton class?

� Forces:
� The use of a public constructor cannot guarantee that no more

than one instance will be created.

� The singleton instance must also be accessible to all classes
that require it

4

Software Engineering I – SE361

Singleton
� Solution:

Company

theCompany

Company «private»
getInstance

if (theCompany==null)
theCompany= new Company();

return theCompany;

«Singleton»

theInstance

getInstance

Software Engineering I – SE361

The Controller Façade Pattern

� Context:
� Often, an application contains several complex packages.

� A programmer working with such packages has to manipulate many
different classes

� Problem:
� How do you simplify the view that programmers have of a complex

package?

� Forces:
� It is hard for a programmer to understand and use an entire subsystem

� If several different application classes call methods of the complex
package, then any modifications made to the package will necessitate a
complete review of all these classes.

5

Software Engineering I – SE361

Façade
� Solution:

«PackageClass3»

«PackageClass2»

«PackageClass1»

****** RegularFlight

Person

Airline

findFlight
makeBooking
deleteBooking

«Facade»

Software Engineering I – SE361

The Observer Pattern

� Context:
� When an association is created between two classes, the code

for the classes becomes inseparable.
� If you want to reuse one class, then you also have to reuse the

other.

� Problem:
� How do you reduce the interconnection between classes,

especially between classes that belong to different modules or
subsystems?

� Forces:
� You want to maximize the flexibility of the system to the

greatest extent possible

6

Software Engineering I – SE361

Observer
� Solution:

WeatherViewer

* ******

Observers are
notified when a new
prediction is readyForecaster

Observable

«ConcreteObservable» «ConcreteObserver»

«Observable»

addObserver
notifyObservers

«interface»
«Observer»

update

* ****** «interface»
Observer

Software Engineering I – SE361

Observer

� Antipatterns:

� Connect an observer directly to an observable so that
they both have references to each other.

� Observers “poll” observables for changes

� Observerables “call” update methods directly

� Make the observers subclasses of the observable.

7

Software Engineering I – SE361

Pattern Difficulties and Risks

� Patterns are not a panacea:
� Whenever you see an indication that a pattern should be

applied, you might be tempted to blindly apply the pattern.
However this can lead to unwise design decisions .

� Resolution:
� Always understand in depth the forces that need to be

balanced, and when other patterns better balance the forces.

� Make sure you justify each design decision carefully.

Software Engineering I – SE361

Pattern Difficulties and Risks

� Developing patterns is hard
� Writing a good pattern takes considerable work.

� A poor pattern can be hard to apply correctly

� Resolution:
� Do not write patterns for others to use until you have

considerable experience both in software design and in the use
of patterns.

� Take an in-depth course on patterns.

� Iteratively refine your patterns, and have them peer reviewed
at each iteration.

8

Software Engineering I – SE361

Evaluating Designs

� The application of “well-known” design patterns that
promote loosely coupled, highly cohesive designs.

� Conversely, identify the existence of recurring negative
solutions – AntiPatterns

� AntiPattern : use of a pattern in an inappropriate context.

� Refactoring : changing, migrating an existing solution
(antipattern) to another by improving the structure of the
solution.

Software Engineering I – SE361 *Slides from MITRE organization : www.mitre.org

*

9

Software Engineering I – SE361

Software Engineering I – SE361

10

Software Engineering I – SE361

Software Engineering I – SE361

11

Software Engineering I – SE361

