
JUnit

Introduction to Unit Testing in Java

Testing, 1 – 2 – 3 – 4, Testing…

What Does a Unit Test Test?

 The term “unit” predates the O-O era.

 Unit – “natural” abstraction unit of an O-O

system: class or its instantiated form, object.

 Unit Tests – verify a small chunk of code,

typically a path through a method or function.

 Not application level functionality.

How Do We Unit Test?

 Print Statements (diffs against benchmarks)

 Debuggers – examine variables, observe

execution paths.

 Typically done by unit developer.

 Best benefit if running of tests is automated.

 Tests best run in isolation from one another.

 Tests built incrementally as product code is

developed.

The Typical Test Cycle

 Develop a suite of test cases

 Create some test fixtures to support the running

of each test case.

 Run the test – capture test results.

 Clean-up fixtures, if necessary.

 Report and analyze the test results.

Why is Unit Testing Good?

 Identifies defects early in the development cycle.

 Many small bugs ultimately leads to chaotic
system behavior

 Testing affects the design of your code.

 Successful tests breed confidence.

 Testing forces us to read our own code – spend
more time reading than writing

 Automated tests support maintainability and
extendibility.

Why Don’t We Unit Test?

 “Coding unit tests takes too much time”

 “I’m to busy fixing bugs to write tests”

 “Testing is boring – it stifles my creativity”

 “My code is virtually flawless…”

 “Testing is better done by the testing

department”

 “We’ll go back and write unit tests after we get

the code working”

What is JUnit?

 JUnit is an open source Java testing framework
used to write and run repeatable tests.

 It is an instance of the xUnit architecture for
unit testing frameworks.

 JUnit features include:

 Assertions for testing expected results

 Test fixtures for sharing common test data

 Test suites for easily organizing and running tests

 Graphical and textual test runners

JUnit Under the Hood

Originally written by Kent

Beck and Erich Gamma. –

design patterns.

An offspring of a similar

framework for Smalltalk

(SUnit)

A common xUnit

architecture has evolved

and has been implemented

in a variety of languages.

The JUnit Test Template

 Create a test class that extends TestCase

 Create a testxxx() method for each individual

test to be run.

 Create a test fixture – resources needed to

support the running of the test.

 Write the test, collect interesting test behavior

 Tear down the fixture (if needed)

 Run the tests with a text or Swing interface.

SimpleTest

import java.util.*;

import junit.framework.*;

public class SimpleTest extends TestCase{

 public void testEmptyCollection() {

 Collection testCollection = new ArrayList();

 assertTrue(testCollection.isEmpty());

 }

 public static void main(String args[]){

 junit.textui.TestRunner.run(SimpleTest.class);

 }

}

Key JUnit Concepts

 assert -

 assertEquals(expected, actual) – also NotEquals

 assertNull(actual result) – also NotNull

 assertTrue(actual result) - also False

 failures –

 Exceptions raised by asserts (expected)

 errors –

 Java runtime exceptions (not expected)

Test Hierarchies

 JUnit supports test hierarchies

 Test Suite-A

 Test Case1

 Test Case2

 Test Suite-B

 Test Case3

 Test Suite-C

(and so on …)

 If all tests pass, green bar!

Copyright © Andrew

Meneely 14

Green Bar!

 Sometimes you expect an exception
1. First, run the code that should cause an exception

2. Catch the specific exception you expect

3. If that exception is not thrown, then fail the test with
fail(“message”)

4. Assert the exception’s message, in the catch block

Copyright © Andrew

Meneely 15

Test for Exceptions!

 Every day you are coding, do the following:

 Write code

 Write unit tests for that code

 Doesn’t need to be exhaustive – hit the three types

 Fix unit tests.

 Go back to writing code

 Green bar every day. No excuses.

16

A Day in the Unit Tested-Life

More…

 TDD / TFD ???

 Test Driven Design

 Test First Design

 JUnit provides support for these agile techniques,

but JUnit is lifecycle agnostic

 Extensions for J2EE applications

 What about GUI’s? – JUnit limited

 An advanced skill that takes years to master

 General outline of events
1. Write a unit test.

2. You can’t run your unit test because it doesn’t compile… you
haven’t written that class yet. Write a stub.

3. Run your test again. Test runs, but fails because the class does
nothing.

4. Implement the simplest possible solution (e.g. hardcode) to make
that unit test pass.

5. Run all of your unit tests again. Fix until green bar.

6. Refactor (e.g. extract constants, methods, etc.).

7. Run all of your unit tests again. Green bar!

8. Go back to step 1 (or 3 if you have more ways to test that one
method).

Copyright © Andrew

Meneely 18

Test-Driven Development *

Resources

 JUnit: www.junit.org

 Testing Frameworks :
http://c2.com/cgi/wiki?TestingFramework

 cppUnit: http://cppunit.sourceforge.net/doc/1.8.0/index.html

 SUnit: http://sunit.sourceforge.net/

 Unit Testing in Java – How Tests Drive the Code, Johannes Link

 Test-Driven Development by Example, Kent Beck

 Pragmatic Unit Testing in Java with JUnit, Andy Hunt & Dave
Thomas

 “Learning to Love Unit Testing”, Thomas & Hunt:
www.pragmaticprogrammer.com/articles/stqe-01-2002.pdf

http://www.junit.org/
http://c2.com/cgi/wiki?TestingFramework
http://cppunit.sourceforge.net/doc/1.8.0/index.html
http://sunit.sourceforge.net/
http://www.pragmaticprogrammer.com/articles/stqe-01-2002.pdf
http://www.pragmaticprogrammer.com/articles/stqe-01-2002.pdf
http://www.pragmaticprogrammer.com/articles/stqe-01-2002.pdf
http://www.pragmaticprogrammer.com/articles/stqe-01-2002.pdf
http://www.pragmaticprogrammer.com/articles/stqe-01-2002.pdf

