
1

Testing (revisited) & Release

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 2

V & V

� Verification refers to the set of tasks that ensure 
that software correctly implements a specific 
function. 

� Validation refers to a different set of tasks that 
ensure that the software that has been built is 
traceable to customer requirements. Boehm 
[Boe81] states this another way: 
� Verification: "Are we building the product right?" 
� Validation: "Are we building the right product?"



2

Testing Phases

� Unit Testing
� Developer tests individual modules
� Usually glass box

� Integration testing
� Put modules together, try to get them working together
� Integration testing is complete when the different pieces 

are able to work together
� System testing

� Black-box testing of entire deliverable against specs
� Acceptance testing

� Testing against user needs, often by the user

Inspecting compared to testing

� Both testing and inspection rely on different aspects of 
human intelligence.

� Testing can find defects whose consequences are 
obvious but which are buried in complex code.

� Inspecting can find defects that relate to maintainability 
or efficiency.

� The chances of mistakes are reduced if both activities 
are performed.



3

Testing or inspecting, which comes 
first?

� It is important to inspect software before extensively 
testing it. 

� The reason for this is that inspecting allows you to quickly 
get rid of many defects. 

� If you test first, and inspectors recommend that redesign is 
needed, the testing work has been wasted.

� There is a growing consensus that it is most efficient to inspect 
software before any testing is done.

� Even before developer testing

The test-fix-test cycle 

�When a failure occurs during testing:
� Each failure report is entered into a failure tracking 

system. 
� It is then screened and assigned a priority. 
� Low-priority failures might be put on a known bugs list

that is included with the software’s release notes. 
� Some failure reports might be merged if they appear to 

result from the same defects.
� Somebody is assigned to investigate a failure.
� That person tracks down the defect and fixes it. 
� Finally a new version of the system is created, ready to be 

tested again.



4

The ripple effect

� There is a high probability that the efforts to remove the 
defects may have actually added new defects

� The maintainer tries to fix problems without fully 
understanding the ramifications of the changes

� The maintainer makes ordinary human errors

� The system regresses into a more and more failure-prone 
state

Regression testing

� It tends to be far too expensive to re-run every single test 
case every time a change is made to software. 

� Hence only a subset of the previously-successful test cases 
is actually re-run. 

� This process is called regression testing.
� The tests that are re-run are called regression tests. 

� Regression test cases are carefully selected to cover as 
much of the system as possible.

�The “law of conservation of bugs”:
� The number of bugs remaining in a large system is 

proportional to the number of bugs already fixed



5

Deciding when to stop testing

� All of the level 1 (“critical”) test cases must have been 
successfully executed.

� Certain pre-defined percentages of level 2 and level 3 test 
cases must have been executed successfully.

� The targets must have been achieved and are maintained 
for at least two cycles of ‘builds’.

� A build involves compiling and integrating all the components.
� Failure rates can fluctuate from build to build as:

� Different sets of regression tests are run.
� New defects are introduced.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 10

Who Tests the Software?

developerdeveloper independent testerindependent tester

Understands the system Understands the system 

but, will test "gently"but, will test "gently"

and, is driven by "delivery"and, is driven by "delivery"

Must learn about the system,Must learn about the system,
but, will attempt to break itbut, will attempt to break it

and, is driven by qualityand, is driven by quality



6

The roles of people involved in testing

� The first pass of unit and integration testing is called 
developer testing. 

� Preliminary testing performed by the software developers who do 
the design.

� Independent testing may be performed by separate group.
� They do not have a vested interest in seeing as many test cases 

pass as possible.

� They develop specific expertise in how to do good testing, and 
how to use testing tools.

Test planning

� Decide on overall test strategy

� What type of integration

� Whether to automate system tests

� Whether there is an independent test team

� Decide on the coverage strategy for system tests

� Compute the number of test cases needed

� Identify the test cases and implement them

� The set of test cases constitutes a “test suite”

� May categorize into critical, important, optional tests (level 1, 2, 3)

� Identify a subset of the tests as regression tests



7

Testing performed by users and clients

� Alpha testing
� Performed by the user or client, but under the supervision of the 

software development team. 

� Beta testing
� Performed by the user or client in a normal work environment.

� Recruited from the potential user population.

� An open beta release is the release of low-quality software to the 
general population.

� Acceptance testing
� Performed by users and customers. 

Packaging for Delivery

� Software we deliver to the user must include

� Executable in a convenient format e.g. EXE, JAR file

� Release notes

� User documentation: instructions on usage
� Tutorials, user manuals, “getting started” instructions

� Installation instructions

� May create “installables”

� Compressed packages e.g. zip files, tar files

� Scripts that automate installation procedures



8

Cross-team Testing

� In this project, we will do cross-team testing

� Each team will serve as “independent test team” for another team

� Package your R2 software for delivery to other team

� Create a JAR file, README with execution instructions, 
requirements doc and acceptance test doc

� Designate someone in your team to serve as support contact

� Run acceptance test cases on received software, check for pass/fail

� If failed, note down what inputs were and how it failed

� Perform any other testing you consider necessary

� Can add missed test cases to acceptance test doc

� Can include any other comments at bottom of acceptance test doc

� Deliver cross-team test report to other team

� Objective: To test the software thoroughly, help other team produce 
better software


