Chapter 11

■ User Interface Design

Slide Set to accompany

Software Engineering: A Practitioner's Approach, 7/e by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction with *Software Engineering: A Practitioner's Approach, 7/e.* Any other reproduction or use is prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Interface Design

Easy to learn?
Easy to use?

Easy to understand?

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Interface Design

Typical Design Errors

lack of consistency too much memorization no guidance / help no context sensitivity poor response Arcane/unfriendly

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

3

Golden Rules

- Place the user in control
- Reduce the user's memory load
- Make the interface consistent

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Place the User in Control

- Define interaction modes in a way that does not force a user into unnecessary or undesired actions.
- Provide for flexible interaction.
- Allow user interaction to be interruptible and undoable.
- Streamline interaction as skill levels advance and allow the interaction to be customized.
- Hide technical internals from the casual user.
- Design for direct interaction with objects that appear on the screen.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Reduce the User's Memory Load

- Reduce demand on short-term memory.
- Establish meaningful defaults.
- Define shortcuts that are intuitive.
- The visual layout of the interface should be based on a real world metaphor.
- Disclose information in a progressive fashion.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Make the Interface Consistent

- Allow the user to put the current task into a meaningful context.
- Maintain consistency across a family of applications.
- If past interactive models have created user expectations, do not make changes unless there is a compelling reason to do so.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

7

User Interface Design Models

- User model a profile of all end users of the system
- Design model a design realization of the user model
- Mental model (system perception) the user's mental image of what the interface is
- Implementation model the interface "look and feel" coupled with supporting information that describe interface syntax and semantics

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Task Analysis and Modeling

- Answers the following questions ...
 - What work will the user perform in specific circumstances?
 - What tasks and subtasks will be performed as the user does the work?
 - What specific problem domain objects will the user manipulate as work is performed?
 - What is the sequence of work tasks—the workflow?
 - What is the hierarchy of tasks?
- Use-cases define basic interaction
- Task elaboration refines interactive tasks
- Object elaboration identifies interface objects (classes)
- Workflow analysis defines how a work process is completed when several people (and roles) are involved

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

9

Analysis of Display Content

- Are different types of data assigned to consistent geographic locations on the screen (e.g., photos always appear in the upper right hand corner)?
- Can the user customize the screen location for content?
- Is proper on-screen identification assigned to all content?
- If a large report is to be presented, how should it be partitioned for ease of understanding?
- Will mechanisms be available for moving directly to summary information for large collections of data.
- Will graphical output be scaled to fit within the bounds of the display device that is used?
- How will color to be used to enhance understanding?
- How will error messages and warning be presented to the user?

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Interface Design Steps

- Using information developed during interface analysis, define interface objects and actions (operations).
- Define events (user actions) that will cause the state of the user interface to change. Model this behavior.
- Depict each interface state as it will actually look to the end-user.
- Indicate how the user interprets the state of the system from information provided through the interface.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

11

Design Issues

- Response time
- Help facilities
- Error handling
- Menu and command labeling
- Application accessibility
- Internationalization

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Interface Design Principles-I

- Anticipation—A WebApp should be designed so that it anticipates the use's next move.
- Communication—The interface should communicate the status of any activity initiated by the user
- Consistency—The use of navigation controls, menus, icons, and aesthetics (e.g., color, shape, layout)
- Controlled autonomy—The interface should facilitate user movement throughout the WebApp, but it should do so in a manner that enforces navigation conventions that have been established for the application.
- Efficiency—The design of the WebApp and its interface should optimize the user's work efficiency, not the efficiency of the Web engineer who designs and builds it or the client-server environment that executes it.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

13

Interface Design Principles-II

- Focus—The WebApp interface (and the content it presents) should stay focused on the user task(s) at hand.
- Fitt's Law—"The time to acquire a target is a function of the distance to and size of the target.'
- Human interface objects—A vast library of reusable human interface objects has been developed for WebApps.
- Latency reduction—The WebApp should use multi-tasking in a way that lets the user proceed with work as if the operation has been completed.
- Learnability— A WebApp interface should be designed to minimize learning time, and once learned, to minimize relearning required when the WebApp is revisited.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Interface Design Principles-III

- Maintain work product integrity—A work product (e.g., a form completed by the user, a user specified list) must be automatically saved so that it will not be lost if an error occurs.
- Readability—All information presented through the interface should be readable by young and old.
- Track state—When appropriate, the state of the user interaction should be tracked and stored so that a user can logoff and return later to pick up where she left off.
- Visible navigation—A well-designed WebApp interface provides "the illusion that users are in the same place, with the work brought to them."

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

15

Aesthetic Design

- Don't be afraid of white space.
- Emphasize content.
- Organize layout elements from top-left to bottom right.
- Group navigation, content, and function geographically within the page.
- Don't extend your real estate with the scrolling bar.
- Consider resolution and browser window size when designing layout.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.