
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 1

Chapter 11

� User Interface Design

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 2

Interface Design

Easy to use?Easy to use?

Easy to understand?Easy to understand?

Easy to learn?Easy to learn?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 3

Interface Design

lack of consistencylack of consistency
too much memorizationtoo much memorization
no guidance / helpno guidance / help
no context sensitivityno context sensitivity
poor responsepoor response
Arcane/unfriendlyArcane/unfriendly

Typical Design ErrorsTypical Design Errors

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 4

Golden Rules

� Place the user in control
� Reduce the user’s memory load
� Make the interface consistent

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 5

Place the User in Control
Define interaction modes in a way that does not Define interaction modes in a way that does not
force a user into unnecessary or undesired actions. force a user into unnecessary or undesired actions.

Provide for flexible interaction. Provide for flexible interaction.

Allow user interaction to be interruptible and Allow user interaction to be interruptible and
undoable. undoable.

Streamline interaction as skill levels advance and Streamline interaction as skill levels advance and
allow the interaction to be customized. allow the interaction to be customized.

Hide technical internals from the casual user. Hide technical internals from the casual user.

Design for direct interaction with objects that appear Design for direct interaction with objects that appear
on the screen.on the screen.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 6

Reduce the User’s Memory Load

Reduce demand on shortReduce demand on short--term memory. term memory.

Establish meaningful defaults. Establish meaningful defaults.

Define shortcuts that are intuitive. Define shortcuts that are intuitive.

The visual layout of the interface should be based on a The visual layout of the interface should be based on a
real world metaphor. real world metaphor.

Disclose information in a progressive fashion.Disclose information in a progressive fashion.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 7

Make the Interface Consistent

Allow the user to put the current task into a Allow the user to put the current task into a
meaningful context. meaningful context.

Maintain consistency across a family of Maintain consistency across a family of
applications. applications.

If past interactive models have created user If past interactive models have created user
expectations, do not make changes unless there is expectations, do not make changes unless there is
a compelling reason to do so. a compelling reason to do so.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 8

User Interface Design Models
� User model — a profile of all end users of

the system
� Design model — a design realization of the

user model
� Mental model (system perception) — the

user’s mental image of what the interface is
� Implementation model — the interface “look

and feel” coupled with supporting information
that describe interface syntax and semantics

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 9

Task Analysis and Modeling
� Answers the following questions …

� What work will the user perform in specific circumstances?
� What tasks and subtasks will be performed as the user does

the work?
� What specific problem domain objects will the user manipulate

as work is performed?
� What is the sequence of work tasks—the workflow?
� What is the hierarchy of tasks?

� Use-cases define basic interaction
� Task elaboration refines interactive tasks
� Object elaboration identifies interface objects (classes)
� Workflow analysis defines how a work process is

completed when several people (and roles) are involved

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 10

Analysis of Display Content
� Are different types of data assigned to consistent geographic

locations on the screen (e.g., photos always appear in the
upper right hand corner)?

� Can the user customize the screen location for content?
� Is proper on-screen identification assigned to all content?
� If a large report is to be presented, how should it be partitioned

for ease of understanding?
� Will mechanisms be available for moving directly to summary

information for large collections of data.
� Will graphical output be scaled to fit within the bounds of the

display device that is used?
� How will color to be used to enhance understanding?
� How will error messages and warning be presented to the

user?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 11

Interface Design Steps
� Using information developed during interface

analysis, define interface objects and actions
(operations).

� Define events (user actions) that will cause the
state of the user interface to change. Model
this behavior.

� Depict each interface state as it will actually
look to the end-user.

� Indicate how the user interprets the state of the
system from information provided through the
interface.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 12

Design Issues

� Response time
� Help facilities
� Error handling
� Menu and command

labeling
� Application accessibility
� Internationalization

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 13

Interface Design Principles-I
� Anticipation—A WebApp should be designed so that it

anticipates the use’s next move.
� Communication—The interface should communicate the status

of any activity initiated by the user
� Consistency—The use of navigation controls, menus, icons,

and aesthetics (e.g., color, shape, layout)
� Controlled autonomy—The interface should facilitate user

movement throughout the WebApp, but it should do so in a
manner that enforces navigation conventions that have been
established for the application.

� Efficiency—The design of the WebApp and its interface should
optimize the user’s work efficiency, not the efficiency of the
Web engineer who designs and builds it or the client-server
environment that executes it.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 14

Interface Design Principles-II
� Focus—The WebApp interface (and the content it presents) should

stay focused on the user task(s) at hand.
� Fitt’s Law—“The time to acquire a target is a function of the distance to

and size of the target.”
� Human interface objects—A vast library of reusable human interface

objects has been developed for WebApps.
� Latency reduction—The WebApp should use multi-tasking in a way

that lets the user proceed with work as if the operation has been
completed.

� Learnability— A WebApp interface should be designed to minimize
learning time, and once learned, to minimize relearning required when
the WebApp is revisited.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 15

Interface Design Principles-III
� Maintain work product integrity—A work product (e.g., a form

completed by the user, a user specified list) must be automatically
saved so that it will not be lost if an error occurs.

� Readability—All information presented through the interface should be
readable by young and old.

� Track state—When appropriate, the state of the user interaction should
be tracked and stored so that a user can logoff and return later to pick
up where she left off.

� Visible navigation—A well-designed WebApp interface provides “the
illusion that users are in the same place, with the work brought to
them.”

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 16

Aesthetic Design
� Don’t be afraid of white space.
� Emphasize content.
� Organize layout elements from top-left to

bottom right.
� Group navigation, content, and function

geographically within the page.
� Don’t extend your real estate with the scrolling

bar.
� Consider resolution and browser window size

when designing layout.

