
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 1

Chapter 15

� Review Techniques

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 2

Reviews

... there is no particular reason... there is no particular reason
why your friend and colleaguewhy your friend and colleague
cannot also be your sternest critic.cannot also be your sternest critic.

Jerry WeinbergJerry Weinberg

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 3

What Are Reviews?

� a meeting conducted by technical
people for technical people

� a technical assessment of a work
product created during the software
engineering process

� a software quality assurance
mechanism

� a training ground

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 4

What Reviews Are Not

� A project summary or progress
assessment

� A meeting intended solely to impart
information

� A mechanism for political or personal
reprisal!

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 5

What Do We Look For?
� Errors and defects

� Error—a quality problem found beforethe software is released
to end users

� Defect—a quality problem found onlyafter the software has been
released to end-users

� We make this distinction because errors and defects have very
different economic, business, psychological, and human
impact

� However, the temporal distinction made between errors and
defects in this book is not mainstream thinking

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 6

Defect Amplification
� A defect amplification model[IBM81] can be used to illustrate

the generation and detection of errors during the design and
code generation actions of a software process.

Errors passed through

Amplified errors 1:x

Newly generated errors

Development step

Errors from
Previous step Errors passed

To next step

Defects Detection

Percent
Efficiency

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 7

Defect Amplification

� In the example provided in SEPA, Section
15.2,
� a software process that does NOT include reviews,

• yields 94 errors at the beginning of testing and
• Releases 12 latent defects to the field

� a software process that does include reviews,
• yields 24 errors at the beginning of testing and

• releases 3 latent defects to the field

� A cost analysis indicates that the process with NO
reviews costs approximately 3 times more than the
process with reviews, taking the cost of correcting the
latent defects into account

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 8

Reference Model

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 9

Informal Reviews

� Informal reviews include:
� a simple desk check of a software engineering work

product with a colleague

� a casual meeting (involving more than 2 people) for the
purpose of reviewing a work product, or

� the review-oriented aspects of pair programming

� pair programmingencourages continuous review as
a work product (design or code) is created.
� The benefit is immediate discovery of errors and better

work product quality as a consequence.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 10

Formal Technical Reviews

� The objectives of an FTR are:
� to uncover errors in function, logic, or implementation for

any representation of the software

� to verify that the software under review meets its
requirements

� to ensure that the software has been represented according
to predefined standards

� to achieve software that is developed in a uniform manner

� to make projects more manageable

� The FTR is actually a class of reviews that includes
walkthroughsand inspections.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 11

The Review Meeting

� Between three and five people (typically)
should be involved in the review.

� Advance preparation should occur but should
require no more than two hours of work for
each person.

� The duration of the review meeting should be
less than two hours.

� Focus is on a work product (e.g., a portion of a
requirements model, a detailed component design,
source code for a component)

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 12

The Players

reviewreview
leaderleader

producerproducer

recorderrecorder reviewerreviewer

standards bearer (SQA)standards bearer (SQA)

maintenance maintenance
oracleoracle

user repuser rep

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 13

The Players
� Producer—the individual who has developed the work

product
� informs the project leader that the work product is complete

and that a review is required

� Review leader—evaluates the product for readiness,
generates copies of product materials, and distributes
them to two or three reviewers for advance preparation.

� Reviewer(s)—expected to spend between one and two
hours reviewing the product, making notes, and
otherwise becoming familiar with the work.

� Recorder—reviewer who records (in writing) all important
issues raised during the review.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 14

Conducting the Review
� Review the product, not the producer.
� Set an agenda and maintain it.
� Limit debate and rebuttal.
� Enunciate problem areas, but don't attempt to solve

every problem noted.
� Take written notes.
� Limit the number of participants and insist upon advance

preparation.
� Develop a checklist for each product that is likely to be

reviewed.
� Allocate resources and schedule time for FTRs.
� Conduct meaningful training for all reviewers.
� Review your early reviews.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 15

Review Options Matrix

trained leadertrained leader
agenda establishedagenda established
reviewers prepare in advancereviewers prepare in advance
producer presents productproducer presents product
““ readerreader ”” presents productpresents product
recorder takes notesrecorder takes notes
checklists used to find errorschecklists used to find errors
errors categorized as founderrors categorized as found
issues list createdissues list created
team must signteam must sign --off on resultoff on result

IPRIPR——informal peer review WTinformal peer review WT ——WalkthroughWalkthrough
ININ——Inspection RRRInspection RRR ——round robin reviewround robin review

IPRIPR WTWT ININ RRRRRR

nono
maybemaybe
maybemaybe
maybemaybe
nono
maybemaybe
nono
nono
nono
nono

yesyes
yesyes
yesyes
yesyes
nono
yesyes
nono
nono
yesyes
yesyes

yesyes
yesyes
yesyes
nono
yesyes
yesyes
yesyes
yesyes
yesyes
yesyes

yesyes
yesyes
yesyes
nono
nono
yesyes
nono
nono
yesyes
maybemaybe

**

*

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 16

Sample-Driven Reviews (SDRs)
� SDRs attempt to quantify those work products that are

primary targets for full FTRs.
To accomplish this …
� Inspect a fraction ai of each software work product, i.

Record the number of faults, fi found within ai.
� Develop a gross estimate of the number of faults within

work product i by multiplying fi by 1/ai.
� Sort the work products in descending order according to

the gross estimate of the number of faults in each.

� Focus available review resources on those work
products that have the highest estimated number of
faults.

