
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 1

Chapter 18

� Testing Conventional Applications

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S.  Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction 
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is 
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student 
use.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 2

Testability

� Operability—it operates cleanly
� Observability—the results of each test case are readily 

observed

� Controllability—the degree to which testing can be 
automated and optimized

� Decomposability—testing can be targeted

� Simplicity—reduce complex architecture and logic to 
simplify tests

� Stability—few changes are requested during testing
� Understandability—of the design



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 3

What is a “Good” Test?

� A good test has a high probability of 
finding an error

� A good test is not redundant.
� A good test should be “best of breed”
� A good test should be neither too 

simple nor too complex

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 4

Internal and External Views

� Any engineered product (and most other 
things) can be tested in one of two ways: 
� Knowing the specified function that a product has 

been designed to perform, tests can be conducted 
that demonstrate each function is fully operational 
while at the same time searching for errors in each 
function; 

� Knowing the internal workings of a product, tests can 
be conducted to ensure that "all gears mesh," that is, 
internal operations are performed according to 
specifications and all internal components have been 
adequately exercised.



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 5

Test Case Design
"Bugs lurk in corners "Bugs lurk in corners 
and congregate at and congregate at 
boundaries ..."boundaries ..."

Boris BeizerBoris Beizer

OBJECTIVEOBJECTIVE

CRITERIACRITERIA

CONSTRAINTCONSTRAINT

to uncover errorsto uncover errors

in a complete mannerin a complete manner

with a minimum of effort and timewith a minimum of effort and time

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 6

Exhaustive Testing

loop < 20 Xloop < 20 X

There are 10   possible paths! If we execute oneThere are 10   possible paths! If we execute one
test per millisecond, it would take 3,170 years totest per millisecond, it would take 3,170 years to
test this program!!test this program!!

1414



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 7

Selective Testing

loop < 20 Xloop < 20 X

Selected path

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 8

Software Testing

Methods

Strategies

white-box
methods      

black-box
methods



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 9

White-Box Testing

... our goal is to ensure that all ... our goal is to ensure that all 
statements and conditions have statements and conditions have 
been executed at least once ...been executed at least once ...

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 10

Why Cover?
logic errors and incorrect assumptions logic errors and incorrect assumptions 
are inversely proportional to a path's are inversely proportional to a path's 
execution probabilityexecution probability

we often  we often  believebelieve that a path is not that a path is not 
likely to be executed;  in fact, reality is likely to be executed;  in fact, reality is 
often counter intuitiveoften counter intuitive

typographical errors are random;  it's typographical errors are random;  it's 
likely that untested paths will contain likely that untested paths will contain 
some some 



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 11

Basis Path Testing

First, we compute the cyclomatic 
complexity:

number of simple decisions + 1         

or

number of enclosed areas + 1

In this case, V(G) = 4

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 12

Cyclomatic Complexity

A number of industry studies have indicated A number of industry studies have indicated 
that the higher V(G), the higher the probability that the higher V(G), the higher the probability 
or errors.or errors.

V(G)V(G)

modulesmodules

modules in this range are modules in this range are 
more error pronemore error prone



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 13

Basis Path Testing

Next, we derive the Next, we derive the 
independent paths:independent paths:

Since V(G) = 4,Since V(G) = 4,
there are four pathsthere are four paths

Path 1:  1,2,3,6,7,8Path 1:  1,2,3,6,7,8

Path 2:  1,2,3,5,7,8Path 2:  1,2,3,5,7,8

Path 3:  1,2,4,7,8Path 3:  1,2,4,7,8

Path 4:  1,2,4,7,2,4,...7,8Path 4:  1,2,4,7,2,4,...7,8

Finally, we derive testFinally, we derive test
cases to exercise these  cases to exercise these  
paths.paths.

11

22

33
44

55 66

77

88

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 14

Basis Path Testing Notes

you don't need a flow chart, you don't need a flow chart, 
but the picture will help when but the picture will help when 
you trace program pathsyou trace program paths

count each simple logical test, count each simple logical test, 
compound tests count as 2 or compound tests count as 2 or 
moremore

basis path testing should be basis path testing should be 
applied to critical modulesapplied to critical modules



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 15

Deriving Test Cases

� Summarizing:
� Using the design or code as a foundation, draw a 

corresponding flow graph.
� Determine the cyclomatic complexity of the resultant 

flow graph.

� Determine a basis set of linearly independent paths.

� Prepare test cases that will force execution of each 
path in the basis set.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 16

Graph Matrices
� A graph matrix is a square matrix whose size 

(i.e., number of rows and columns) is equal to 
the number of nodes on a flow graph

� Each row and column corresponds to an 
identified node, and matrix entries correspond 
to connections (an edge) between nodes. 

� By adding a link weight to each matrix entry, 
the graph matrix can become a powerful tool 
for evaluating program control structure 
during testing



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 17

Control Structure Testing
� Condition testing — a test case design method 

that exercises the logical conditions contained 
in a program module

� Data flow testing — selects test paths of a 
program according to the locations of 
definitions and uses of variables in the program

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 18

Data Flow Testing
� The data flow testing method [Fra93] selects test paths 

of a program according to the locations of definitions and 
uses of variables in the program.
� Assume that each statement in a program is assigned a 

unique statement number and that each function does not 
modify its parameters or global variables. For a statement 
with S as its statement number

• DEF(S) = {X | statement S contains a definition of X}
• USE(S) = {X | statement S contains a use of X}

� A definition-use (DU) chain of variable X is of the form [X, 
S, S'], where S and S' are statement numbers, X is in 
DEF(S) and USE(S'), and the definition of X in statement S
is live at statement S'



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 19

Loop Testing

Nested Nested 
LoopsLoops

ConcatenatedConcatenated
Loops       Loops       Unstructured       Unstructured       

LoopsLoops

Simple Simple 
looploop

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 20

Loop Testing: Simple Loops
Minimum conditionsMinimum conditions ——Simple LoopsSimple Loops

1.  skip the loop entirely1.  skip the loop entirely

2.  only one pass through the loop2.  only one pass through the loop

3.  two passes through the loop3.  two passes through the loop

4.  m passes through the loop  m < n4.  m passes through the loop  m < n

5.  (n5.  (n--1), n, and (n+1) passes through      1), n, and (n+1) passes through      
the loopthe loop

where n is the maximum number where n is the maximum number 
of allowable passesof allowable passes



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 21

Loop Testing: Nested Loops
Start at the innermost loop. Set all outer loops to t heir Start at the innermost loop. Set all outer loops to t heir 
minimum iteration parameter values.minimum iteration parameter values.

Test the min+1, typical, maxTest the min+1, typical, max --1 and max for the 1 and max for the 
innermost loop, while holding the outer loops at th eir innermost loop, while holding the outer loops at th eir 
minimum values.minimum values.

Move out one loop and set it up as in step 2, holdi ng all Move out one loop and set it up as in step 2, holdi ng all 
other loops at typical values. Continue this step u ntil other loops at typical values. Continue this step u ntil 
the outermost loop has been tested.the outermost loop has been tested.

If the loops are independent of one another If the loops are independent of one another 
then treat each as a simple loopthen treat each as a simple loop
else* treat as nested loopselse* treat as nested loops

endif* endif* 

for example, the final loop counter value of loop 1  is for example, the final loop counter value of loop 1  is 
used to initialize loop 2.used to initialize loop 2.

Nested LoopsNested Loops

Concatenated LoopsConcatenated Loops

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 22

Black-Box Testing

requirementsrequirements

eventseventsinputinput

outputoutput



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 23

Black-Box Testing

� How is functional validity tested?
� How is system behavior and performance tested?
� What classes of input will make good test cases?
� Is the system particularly sensitive to certain input 

values?
� How are the boundaries of a data class isolated?
� What data rates and data volume can the system 

tolerate?
� What effect will specific combinations of data have on 

system operation?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 24

Graph-Based Methods

new
file

menu select generates

(generation time < 1.0 sec)
document

window

document
tex

t

is represented as

contains

Attributes:

background color: white
text color: default color 

     or preferences

(b)

object
#1

Directed link

(link weight)
object

#2

object
#
3

Undirected link

Parallel links

Node weight
(value

)

(a)

allows editing
of

To understand the To understand the 
objects that are objects that are 
modeled in modeled in 
software and the software and the 
relationships that relationships that 
connect these connect these 
objectsobjects

In this context, we 
consider the term 
“objects” in the broadest 
possible context. It 
encompasses data 
objects, traditional 
components (modules), 
and object-oriented 
elements of computer 
software.



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 25

Equivalence Partitioning

useruser
queriesqueries

mousemouse
pickspicks

outputoutput
formatsformats

promptsprompts

FKFK
inputinput

datadata

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 26

Sample Equivalence Classes

user supplied commandsuser supplied commands
responses to system promptsresponses to system prompts
file namesfile names
computational datacomputational data

physical parameters    physical parameters    
bounding valuesbounding values
initiation valuesinitiation values

output data formattingoutput data formatting
responses to error messagesresponses to error messages
graphical data (e.g., mouse picks)graphical data (e.g., mouse picks)

data outside bounds of the program data outside bounds of the program 
physically impossible dataphysically impossible data
proper value supplied in wrong placeproper value supplied in wrong place

Valid dataValid data

Invalid dataInvalid data



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 27

Boundary Value Analysis

useruser
queriesqueries

mousemouse
pickspicks

outputoutput
formatsformats

promptsprompts

FKFK
inputinput

datadata

outputoutput
domaindomaininput domaininput domain

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e 
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 28

Comparison Testing
� Used only in situations in which the reliability of 

software is absolutely critical (e.g., human-
rated systems)
� Separate software engineering teams develop 

independent versions of an application using the 
same specification

� Each version can be tested with the same test data 
to ensure that all provide identical output 

� Then all versions are executed in parallel with real-
time comparison of results to ensure consistency


