
1

Adapted from From

DistributedSystems: Concepts and Design, Coulouris, 

Dollimore and Kindberg

Edition 4, © Addison-Wesley 2005

System Models –
Distributed Architecture

Distributed System Models

� Architectural Models – Placement of parts in a 
distributed system and the relationship between them.

� Fundamental Models – Description of properties that 
are present in all distributed architectures.
� Interaction Models – Issues dealing with the interaction of 

process such as performance and timing of events.

� Failure Models – Specification of faults that can be exhibited by 
processes and communication channels.

� Security Models – Threats to processes and communication 
channels



2

Distributed System Challenges

� Varying modes of use:
� Load, connectivity, conflicting requirements

� Wide range of system environments:
� Heterogeneous HW, OS, networks, scale

� Internal challenges:
� Non-synchronized clocks, data updates, many modes 

of HW & SW failure modes

� External threats:
� Attacks on data integrity & secrecy, denial of service

Architecture Models

� Distributed Architectures:

� Placement of components across a network for 
the useful distribution of data and workload

� Define functional roles of components and 
patterns of communication between them

� Driven by non-functional requirements:

� Performance, reliability, security, cost, etc.



3

Software and hardware service layers in distributed systems

Applications, services

Computer and network hardware

Platform

Operating system 

Middleware

� Platform : 

� Box dependent HW & SW layers that provide services 
to OS layers above

� Middleware:

� Layer of software that masks heterogeneity and 
provides a convenient programming model for 
application programmers.

� Java RMI, CORBA, web services,DCOM(.NET Remoting)

� Services – transactions, persistence, naming, etc.

Software and hardware service layers in 
distributed systems



4

Limitations of Middleware

� Simplifies much distributed development, 
but still requires support at application level

� “end-to-end argument”

� Saltzer, Reed & Clark (1984)

� All communication activities cannot be 
completely abstracted away

� Affects design decisions

Client–Server Model

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:

• Historically the most important and most widely used

• Servers may in turn be clients of other servers

• Simple approach to sharing data and resources, but scales poorly 
(bounded by capacity of server host & bandwidth of network)



5

Variation -a service provided by multiple servers

Server

Server

Server

Service

Client

Client

• Partition set of objects, or replicate copies on several hosts

• Web as an example 

Variation - Web proxy server

Client

Proxy

Web 

server

Web 

server

server
Client

• Supports concept of a cache – store of recently used data objects

• Web browser cache

• Web proxy servers – shared cache of resources for multiple clients

• Increases availability and performance by reducing load on network 
and web servers.



6

Variation - Thin clients and compute servers

Thin
Client

Application
Process

Network computer or PC
Compute server

network

• Thin client – supports a window based interface only

• Compute server – cluster or multiprocessor computer running the application

• Classic example - X-11 Window System

• Highly interactive graphical applications tax the network and compute server

A distributed application based on peer 
processes

Coordination

Application

code

Coordination

Application

code

Coordination

Application

code

• Processes interact cooperatively as peers – no client/server distinction

• Data and resources are collectively stored and managed

• Addresses client/server boundary of computing and communication load

• Objects replicated to distribute load and increase availability

• Classic example - Napster



7

Design Requirements for Distributed Architectures

� Performance Issues

� Response Time – time system takes to process a 
request.

� Responsiveness – how quickly system acknowledges a 
request (as opposed to processing it)

� Throughput – rate at which work gets done

� Latency – time needed to accomplish remote requests

� Note that “performance” can be viewed from 
conflicting perspectives (throughput vs response time)

Guidelines for Designing for Performance

“Make it work, make it right, make it fast” – Kent Beck 

� Start with a “good enough” design (make it work)

� Make the system meet functional requirements (make it right)

� Take measurements to accurately access performance – refactor as 
needed (make it fast)

� Don’t forget maintainability issues – tradeoff 
readability/understandability against performance.

http://c2.com/cgi/wiki?MakeItWorkMakeItRightMakeItFast


