
•1

1

Plan-Driven Methodologies

• The “traditional” way to develop software

• Based on system engineering and quality 
disciplines (process improvement)

• Standards developed from DoD & industry 
to make process fit a systems approach

• Values well defined work products

2

Plan Driven Characteristics

• Focus on repeatability and predictability
• Defined, standardized, and incrementally improving 

processes
• Thorough documentation
• A software system architecture defined up-front
• Detailed plans, workflow, roles, responsibilities, and work 

product descriptions
• Process group containing resources for specialists: process 

monitoring, controlling, and educating
• On-going risk management
• Focus on verification and validation



•2

3

Plan-Driven Methodologies

• Personal Software Process (PSP)

• Team Software Process (TSP, TSPi)

• Rational Unified Process (RUP)

4

PSP / TSP

• Watts Humphrey

• SEI – Software Engineering Institute, 
Carnegie Mellon University

• Also instrumental in the development of 
the CMM (Capability Maturity Model)

• Overview of PSP/TSP
http://www.sei.cmu.edu/tsp/

• Video: “Competing in the Software Age”
http://www.sei.cmu.edu/videos/watts/DPWatts.mov

http://www.sei.cmu.edu/staff/watts/



•3

5

PSP

• PSP is an individual process methodology
• PSP is a structured framework of forms, 

guidelines, and procedures intended to 
guide an engineer in using a defined, 
measured, planned, and quality controlled 
process.

• Goal is to quantitatively access individual 
development skills in order to improve 
personal performance.

6

PSP

• Early defect detection is much less 
expensive than later defect removal

• PSP training follows an evolutionary 
improvement approach. An engineer 
learning to integrate the PSP into his or 
her process begins at Level 0 and 
progresses in process maturity to Level 3

• Each level incorporates skills and 
techniques that have been proven to 
improve the quality of the software 
process.

• Each level has detailed scripts, checklists, 
and templates to guide the engineer 
through required steps



•4

7

PSP Artifacts

• PSP is an artifact centric methodology

• Scripts – orderly structure of steps for each 
phase of development and review

• Forms – used in data collection for defect 
recording, time recording and project 
planning.

• Checklists – design, coding, etc.

8

PSP

• Advantages
– Improved size & time estimation
– Improved productivity
– Reduced testing time
– Improved Quality

• Disadvantages
– Pushback on forms & detailed data recording
– Longevity of PSP requires discipline and 

opportunity to work on TSP teams.



•5

9

Team Software Process (TSP)

• The TSP supports the development of industrial 
strength software through the use of team 
building, planning, and control.

• Relies on PSP team members, but not a necessity.
• Project divided into overlapping, iterative 

development cycles
• Each of the cycles is a “mini waterfall” consisting 

of a cycle launch, strategy, planning, 
requirements, design, implementation, test, and 
postmortem.

10

TSP Structure

• Seven iterative steps in 
each cycle.

• Cycles can and should 
overlap.

• Each cycle produces a 
testable version that is 
a subset of the final 
project.



•6

11

TSP Roles

• Team Leader
• Development Manager
• Planning Manager
• Quality/Process Manager
• Support Manager
• An SEI trained and qualified team coach

oversees the project from a management 
perspective.

12

TSP Artifacts

Lots….
• 21 Process scripts
• 10 Role scripts
• 21 Forms
• 3 Standards
• Like PSP, goal is to use above artifacts to 

guide organization and use measurements to 
continually improve the team as a whole.



•7

13

TSP

• Advantages
– Scripted (consistent) process activities.

– Teams take ownership of their process and plans 
(i.e. make realistic commitments)

– Process improvement focus

– Visible tracking

• Disadvantages
– Similar to PSP (artifact centric, high ceremony)

– Doesn’t scale well for small teams / short projects

14

Rational Unified Process (RUP)

• Generic process framework intended to to
be adjusted to a variety of organizations and 
projects

• Specifically designed for O-O techniques 
using UML diagrams

• A tool centric methodology



•8

15

16

Time Dimensions (Phases)

• Inception phase – Decide what to do, the business case, and the scope 
of the project. Make an initial project plan with rough estimations of 
time and resources required. Define risks that need to be handled in the 
elaboration phase. 

• Elaboration phase – Analyze the problem domain and define a 
technically feasible architecture. Mitigate the highest risks to the 
projects. Make a detailed project plan with prioritized activities. 

• Construction phase – Develop, integrate and test the product defined 
in the elaboration phase. Optimize the resources so that they can work 
in parallel and reuse each other’s work. Produce user documentation. 

• Transition phase – Distribute the product to the customers and 
maintain it. 



•9

17

Core Process Disciplines 
(Engineering Workflows)

• Business modeling - Common understanding for the business process 
to be supported is assured. 

• Requirements– Translation of the business model to functional and 
non-functional requirements 

• Analysis & Design– Description of how the system is to be realized to 
fulfill all requirements. 

• Implementation– Implementation of the design, unit tests and 
integration of components into executable systems.

• Test - Find defects as early as possible as the cost to correct them 
increases the later in a software cycle they are found. Tests are focused 
on three areas, reliability, functionality and performance. 

• Deployment – Production of product releases, and delivery of them to 
end-users. Provision of support and migration help. 

18

Supporting Workflows

• Project Management – Management of 
competing objectives, risks to the project and 
successful delivery of a product. 

• Configuration and Change Management -
Management of parallel development, 
development done at multiple sites, multiple 
variants of systems and change requests. 

• Environment – Provision of tools to a software 
project and adaptation of RUP to the specific 
project. 



•10

19

RUP Artifacts

• ~30 top level documents, each discipline has its 
own set

• Supported by Rational Tools
• Example: Requirements Workflow, RequisitePro

Tool 
– Vision Statement
– SRS (Software Requirements Specification)
– Supplementary Spec (non-functional req)
– Use Cases
– Glossary
– Use Case Model

20

RUP Best Practices

• Develop software iteratively

• Manage Requirements

• Use component-based archtiectures

• Visually model software

• Continually verify software

• Control changes to software



•11

21

RUP Roles

Expand or contract based on project size:
– Analyst
– Designer
– Implementer
– Reviewer
– Test Designer
– Tester
– Integrator
– Project Manager
– Technical Writer
– Architect
– User Interface Designer

22

RUP

• Advantages
– Tool and O-O practices support

– Can be tailored to for project size 

• Disadvantages
– Dependent on Rational Tools and practices

– Not always easy to scope down for smaller 
projects.


