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Software Quality
& 

Software Quality Assurance
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Software Quality
A definition of quality should emphasize three important points:
1. Software requirements are the foundation from which quality is 

measured. Lack of conformance to requirement is lack of 
quality. 

2. Specified standards define a set of development criteria that 
guide the manner in which software is engineered. If the criteria 
are not followed, lack of quality will almost surely result. 

3. There is a set of implicit requirements that often goes 
unmentioned (e.g. good maintainability). If software conforms 
to its explicit requirements but fails to meet implicit 
requirements, software quality is suspect.

[DACS]

Meet the explicit and implicit requirements – the needs
Good product quality correlates with a good engineering process
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Software Testing

• The purpose of software testing is to assess and 
evaluate the quality of work performed at each step of 
the software development process. 

• Although it sometimes seems that way, the purpose of 
testing is NOT to use up all the remaining budget or 
schedule resources at the end of a development effort.

• The goal of testing is to ensure that the software 
performs as intended, and to improve software quality, 
reliability and maintainability. 

[DACS]

Software testing is a full-life-cycle assessment of quality
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Quality and Testing

• A good development process, tools, methods, and people go 
far in providing quality products

• Testing is one aspect of assuring software quality
− It is a measure of quality, it does not deliver quality

• “Quality cannot be tested into a product”

• Software Quality Assurance includes 
− Software engineering process improvement

� Prevent the insertion of defects
− Fault tolerant software design

� Tolerate the existence of defects
− All aspects of software verification and validation

� Including testing
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Errors, Faults and Failures

• Failures are usually a result of system errors that are 
derived from faults in the system

• However, faults do not necessarily result in system 
errors
− The faulty system state may be transient and 

‘corrected’ before an error arises
• Errors do not necessarily lead to system failures

− The error can be corrected by built-in error 
detection and recovery 

− The failure can be protected against by built-in 
protection facilities
� For example, protect system resources from 

system errors

[Sommerville]
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Verification and Validation

Assuring that a software system meets a user's needs

[Sommerville]
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Verification vs. Validation

• Verification:
− “Are we building the product right?”
− The software should conform to its design

• Validation:
− “Are we building the right product?”

� Validate requirements
− “Did we build the right product?”

� Validate implementation
− The software should do what the user really 

requires
• V&V:  Build the right product and build it right!

[Sommerville]
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The V & V process

• V&V is a whole life-cycle process 
− V & V must be applied at each stage in the 

software process

• V&V has two principal objectives
− The discovery of defects in a system
− The assessment of whether or not the system is 

usable in an operational situation

[Sommerville]
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Static and Dynamic V&V Activities

• Software testing:  
− Concerned with exercising and observing product 

behavior 
− Dynamic V&V

• Software inspections:  
− Concerned with studying software product artifacts 

to discover defects
− Static V&V
− May be supplemented by tool-based (semi-

automated) document and code analysis

[Sommerville]
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V & V Confidence

• Depends on:
− System’s purpose

� Criticality of software function
o Mission critical (organization depends on it)
o Safety critical
o Societal impact

− User expectations
− Marketing environment

• Cost-benefit trade-offs
− High confidence is expensive.  Is it necessary?

[Sommerville]
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How Do You Plan for V&V?

• At each stage of the software development process, 
there are activities that should be done which will help 
develop the testing plans and test cases

• Remember: V&V is expensive. 
− Plan to do it right the first time!

[Sommerville]
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V-Model
• Plan and develop tests throughout the life cycle
• Implement tests when there is an implementation ready to test
• Iterative and incremental: Repeat “V” at each iteration

Requirements 
modeling

Analysis 
modeling

Design 
modeling

Implementation Unit test

Sub-system 
integration test

System 
integration test

Acceptance 
test

Sub-system 
integration 
test plan 

and cases

System 
integration test 
plan and cases

Acceptance 
test plan and 

cases
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Goal of Quality Assurance

• Quality assurance (QA) activities strive to ensure:

− Few, if any, defects remain in the software system 
when it is delivered

− Remaining defects will cause minimal disruptions or 
damages

p. 14

QA Technique Classification

• Defect prevention
− Remove (human) error sources
− Block defects from being injected into software artifacts

• Defect reduction
− Detect defects

� Inspection
� Testing

− Remove defects
� Debugging—iterate on the software engineering activity
� Rework requirements, design, code, etc.

• Defect containment
− Fault tolerance
− Fault containment
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Dealing with Pre-Release and Post-
Release Defects

Human
(developer)

Error

Software
Defect
(bug)

System
Fault

System
Failure

Build time Run time

Defect prevention 
and reduction

Fault detection 
and containment

Latent 
(dormant) 

defect
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Defect Prevention

Remove the root causes of errors
� Education and training address human misconceptions that 

cause errors

� Domain and product knowledge
� Software engineering process
� Technology knowledge

� Formal methods can help identify and correct imprecise 
specifications, designs and implementations

� Standards conformance, use of best practices and patterns can 
help prevent fault injection

p. 18

Defect Reduction
� Discover and remove defects 
� Inspection: direct fault detection

- requirements, design, code, manuals, test 
cases

� Testing: failure observation and fault isolation

− Execute the software and observe failures

− Use execution history/records to analyze and locate 
fault(s) and defect(s) causing the failure
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Issues with Testing

� Need implemented software to execute

� Need software instrumentation, execution history to:
− isolate faults 
− trace to defects

� Impossible to test everything
- Expensive to test most things

� Risk of too much and not enough testing
- Use project risks to guide investment

p. 20

Risk
Denotes a potential negative impact that may arise from some present process or 
from some future event.

� What is your risk exposure to a defect that is hidden?
− Likelihood of defect existence 
− Likelihood of failure occurrence
− Impact if failure occurs

� Risk exposure determines ...
− Testing priority
− Testing depth
− What to test and not to test
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Testing Sweet Spot 

Quantity

Amount of 
Testing

Cost of 
testing

Number of 
missed defects

Optimal 
Amount of 

Testing

Over-testingUnder-testing
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Defect Containment

� Software fault tolerance
− Safety-critical or mission-critical software often must be 

fault tolerant
� The system can continue in operation in spite of a 

fault occurrence
− Techniques: exception handling, recovery blocks

� Software failure containment
− Fault detection and isolation
− Techniques: 

� safety interlocks, 
� physical containment (barriers), 
� disaster planning, etc.
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Conclusion
� QA ensures software:

− delivered with few defects,

− remaining defects will cause minimal disruptions or 
damages

� QA techniques:
− classified according to

� how 

� when they handle defects

− defect prevention, 

− reduction, 

− containment

p. 24

Conclusion

� Defect prevention:
- remove the root cause of human errors

� Defect reduction:
discover defects

- uses inspection 
- testing

� Defect containment:
limit the impact of a fault

- uses fault tolerance
- fault & failure containment
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