
1

p. 1

Software Quality
&

Software Quality Assurance

p. 2

Software Quality
A definition of quality should emphasize three important points:
1. Software requirements are the foundation from which quality is

measured. Lack of conformance to requirement is lack of
quality.

2. Specified standards define a set of development criteria that
guide the manner in which software is engineered. If the criteria
are not followed, lack of quality will almost surely result.

3. There is a set of implicit requirements that often goes
unmentioned (e.g. good maintainability). If software conforms
to its explicit requirements but fails to meet implicit
requirements, software quality is suspect.

[DACS]

Meet the explicit and implicit requirements – the needs
Good product quality correlates with a good engineering process

2

p. 3

Software Testing

• The purpose of software testing is to assess and
evaluate the quality of work performed at each step of
the software development process.

• Although it sometimes seems that way, the purpose of
testing is NOT to use up all the remaining budget or
schedule resources at the end of a development effort.

• The goal of testing is to ensure that the software
performs as intended, and to improve software quality,
reliability and maintainability.

[DACS]

Software testing is a full-life-cycle assessment of quality

p. 4

Quality and Testing

• A good development process, tools, methods, and people go
far in providing quality products

• Testing is one aspect of assuring software quality
− It is a measure of quality, it does not deliver quality

• “Quality cannot be tested into a product”

• Software Quality Assurance includes
− Software engineering process improvement

� Prevent the insertion of defects
− Fault tolerant software design

� Tolerate the existence of defects
− All aspects of software verification and validation

� Including testing

3

p. 5

Errors, Faults and Failures

• Failures are usually a result of system errors that are
derived from faults in the system

• However, faults do not necessarily result in system
errors
− The faulty system state may be transient and

‘corrected’ before an error arises
• Errors do not necessarily lead to system failures

− The error can be corrected by built-in error
detection and recovery

− The failure can be protected against by built-in
protection facilities
� For example, protect system resources from

system errors

[Sommerville]

p. 6

Verification and Validation

Assuring that a software system meets a user's needs

[Sommerville]

4

p. 7

Verification vs. Validation

• Verification:
− “Are we building the product right?”
− The software should conform to its design

• Validation:
− “Are we building the right product?”

� Validate requirements
− “Did we build the right product?”

� Validate implementation
− The software should do what the user really

requires
• V&V: Build the right product and build it right!

[Sommerville]

p. 8

The V & V process

• V&V is a whole life-cycle process
− V & V must be applied at each stage in the

software process

• V&V has two principal objectives
− The discovery of defects in a system
− The assessment of whether or not the system is

usable in an operational situation

[Sommerville]

5

p. 9

Static and Dynamic V&V Activities

• Software testing:
− Concerned with exercising and observing product

behavior
− Dynamic V&V

• Software inspections:
− Concerned with studying software product artifacts

to discover defects
− Static V&V
− May be supplemented by tool-based (semi-

automated) document and code analysis

[Sommerville]

p. 10

V & V Confidence

• Depends on:
− System’s purpose

� Criticality of software function
o Mission critical (organization depends on it)
o Safety critical
o Societal impact

− User expectations
− Marketing environment

• Cost-benefit trade-offs
− High confidence is expensive. Is it necessary?

[Sommerville]

6

p. 11

How Do You Plan for V&V?

• At each stage of the software development process,
there are activities that should be done which will help
develop the testing plans and test cases

• Remember: V&V is expensive.
− Plan to do it right the first time!

[Sommerville]

p. 12

V-Model
• Plan and develop tests throughout the life cycle
• Implement tests when there is an implementation ready to test
• Iterative and incremental: Repeat “V” at each iteration

Requirements
modeling

Analysis
modeling

Design
modeling

Implementation Unit test

Sub-system
integration test

System
integration test

Acceptance
test

Sub-system
integration
test plan

and cases

System
integration test
plan and cases

Acceptance
test plan and

cases

7

p. 13

Goal of Quality Assurance

• Quality assurance (QA) activities strive to ensure:

− Few, if any, defects remain in the software system
when it is delivered

− Remaining defects will cause minimal disruptions or
damages

p. 14

QA Technique Classification

• Defect prevention
− Remove (human) error sources
− Block defects from being injected into software artifacts

• Defect reduction
− Detect defects

� Inspection
� Testing

− Remove defects
� Debugging—iterate on the software engineering activity
� Rework requirements, design, code, etc.

• Defect containment
− Fault tolerance
− Fault containment

8

p. 15

Dealing with Pre-Release and Post-
Release Defects

Human
(developer)

Error

Software
Defect
(bug)

System
Fault

System
Failure

Build time Run time

Defect prevention
and reduction

Fault detection
and containment

Latent
(dormant)

defect

p. 16

e1

e2

e3

e4

e5

e6

f1

f2

f3

f4

x1

x2

Error
Sources

Faults Failures

Input to Software
Development

Software
System

Usage Scenarios
and Results

a
presence of “a”

a
“a” causes “b”

bLegend

defect barrier/remover

a
removal of “a”

Error
Removal

Fault
Removal

Failure
Containment

Failure
Prevention

9

p. 17

Defect Prevention

Remove the root causes of errors
� Education and training address human misconceptions that

cause errors

� Domain and product knowledge
� Software engineering process
� Technology knowledge

� Formal methods can help identify and correct imprecise
specifications, designs and implementations

� Standards conformance, use of best practices and patterns can
help prevent fault injection

p. 18

Defect Reduction
� Discover and remove defects
� Inspection: direct fault detection

- requirements, design, code, manuals, test
cases

� Testing: failure observation and fault isolation

− Execute the software and observe failures

− Use execution history/records to analyze and locate
fault(s) and defect(s) causing the failure

10

p. 19

Issues with Testing

� Need implemented software to execute

� Need software instrumentation, execution history to:
− isolate faults
− trace to defects

� Impossible to test everything
- Expensive to test most things

� Risk of too much and not enough testing
- Use project risks to guide investment

p. 20

Risk
Denotes a potential negative impact that may arise from some present process or
from some future event.

� What is your risk exposure to a defect that is hidden?
− Likelihood of defect existence
− Likelihood of failure occurrence
− Impact if failure occurs

� Risk exposure determines ...
− Testing priority
− Testing depth
− What to test and not to test

11

p. 21

Testing Sweet Spot

Quantity

Amount of
Testing

Cost of
testing

Number of
missed defects

Optimal
Amount of

Testing

Over-testingUnder-testing

p. 22

Defect Containment

� Software fault tolerance
− Safety-critical or mission-critical software often must be

fault tolerant
� The system can continue in operation in spite of a

fault occurrence
− Techniques: exception handling, recovery blocks

� Software failure containment
− Fault detection and isolation
− Techniques:

� safety interlocks,
� physical containment (barriers),
� disaster planning, etc.

12

p. 23

Conclusion
� QA ensures software:

− delivered with few defects,

− remaining defects will cause minimal disruptions or
damages

� QA techniques:
− classified according to

� how

� when they handle defects

− defect prevention,

− reduction,

− containment

p. 24

Conclusion

� Defect prevention:
- remove the root cause of human errors

� Defect reduction:
discover defects

- uses inspection
- testing

� Defect containment:
limit the impact of a fault

- uses fault tolerance
- fault & failure containment

13

p. 25

Sources

• [DACS] Data and Analysis Center for Software,
Software Reliability Source Book,
http://iac.dtic.mil/dacs

• [Patton] Ron Patton, Software Testing, Sams
Publishing, 2001.

• [Sommerville] Ian Sommerville, Software Engineering,
6th Edition, Addison-Wesley, 2001.

• [RUP] Rational Unified Process, IBM Rational
Software (installed on lab machines)

• [Whittaker] “What Is Software Testing? And Why Is It
So Hard?,” IEEE Software, January-February 2000,
pp. 70-79.

