

How-To User Guide: Working with
PicoBlaze on an FPGA

By: Sean Farner
Peter Frandina

Date: 5/20/2008

 2

Table of Contents

1.0 Background Information.. 3
2.0 File Setup.. 3
3.0 Editing Source Files .. 3
4.0 Compiling Source Files ... 4
5.0 VHDL Implementation of the PicoBlaze Components ... 5
6.0 Communicating Between Assembly and VHDL .. 6
7.0 Reference Material .. 7

 3

1.0 Background Information

PicoBlaze offers an 8-bit micro controller for Spartan-3 FPGAs (Other versions of
PicoBlaze are available for other devices). This micro controller occupies just 96
Spartan-3 slices and utilizes a single block RAM to form a ROM store for a program of
up to 1024 instructions. The figure below shows a block diagram of the micro controller
connected to the program block of ROM.

Figure 1 - Microcontroller Connected to Block ROM

2.0 File Setup

Make sure that the following files are in the PicoBlaze development directory:
 KCPSM3.EXE - Compiler
 progname.psm - User’s assembly source file
 ROM_form.coe - used to define the header information
 ROM_form.vhd - used to create a vhdl file
 ROM_form.v - used to create a verilog file

3.0 Editing Source Files

A basic text editor (Vim/Notepad) can be used to create and edit the assembly source file
to run on the PicoBlaze. Only the provided set of instructions that are listed in the
PicoBlaze user manual should be used. The source file should be saved with a .psm
extension. NOTE: The compiler will not accept filenames longer than 8 characters.

 4

4.0 Compiling Source Files

After writing a source file, it can be compiled using the KCPSM3 executable. From a
command prompt in the PicoBlaze development directory, compile the assembly source
file by invoking the following command:

 KCPSM>KCPSM3.EXE progname.psm

This executable will run through several tests and notify you if any errors exist in the
.psm file. It creates several files including the following files of importance:

progname.vhd - VHDL version of the assembly program
 progname.v - Verilog version of the assembly program

For a VHDL project, copy the progname.vhd file that was created by the compiler into
the FPGA development folder. This file should be included in the FPGA project.

An example view of the compiler is shown below:

Figure 2 - Compiler Output at Command Prompt

 5

5.0 VHDL Implementation of the PicoBlaze Components

In order to develop synthesizable code for the FPGA, the provided kcpsm3.vhd must be
added to the project along with the PicoBlaze generated progname.vhd file. The figure
below shows how PicoBlaze is wired into the generated VHDL. The generated code is
addressed by PicoBlaze and executes instructions at the rate of the clock.

Figure 3 - PicoBlaze MicroController wired into the Assembly Generated VHDL

 6

6.0 Communicating Between Assembly and VHDL

Communication is essentially achieved by issuing INPUT and OUTPUT commands in
the assembly program. Both of these commands require a value to be included for the
port_id. In the VHDL code, a mux can be used to determine what the assembly program
is trying to communicate. One mux is used for the INPUT command and another for the
OUTPUT command.

The INPUT mux will be enabled by the READ_STROBE signal from PicoBlaze. This
strobe indicates that an INPUT command was issued. The mux can then use the specified
port_id to decide which data should be sent to the MicroController. An example of this
INPUT mux is seen below.

 input_ports: process(clk)
 begin
 if rising_edge(clk) then
 case port_id is
 when x"00" => -- read UART status at address 00 hex
 in_port <= uart_status_port;
 when x"01" => --read status byte
 in_port <= status_port;

 when others => --Don't care used for other addresses
 in_port <= "XXXXXXXX";

 end case;
 end if;
 end process;

The OUTPUT mux is similar to the INPUT mux, except it is enabled by the
WRITE_STROBE signal from PicoBlaze. When this signal is active, it signifies that the
assembly code issued an OUTPUT command in an attempt to send data from the
Microcontroller to the VHDL logic. The port_id can be used to determine which data
should be expected and which hardware logic to use. An example of this type of mux is
seen below.

 output_ports: process(clk)
 begin
 if rising_edge(clk) then
 if write_strobe='1' then
 case port_id is
 when x"00" => -- Turn on/off led(0) at address 00 hex
 led(0) <= out_data;
 when x"01" => -- Write to UART at address 01 hex
 write_to_uart <= '1';
 when others => --Do nothing to prevent errors
 null;
 end case;
 end if;
 end if;
 end process;

 7

7.0 Reference Material

The following link is to the Xilinx website, where the PicoBlaze files and documentation
are available for download.

http://www.xilinx.com/products/ipcenter/picoblaze-S3-V2-Pro.htm

http://www.xilinx.com/products/ipcenter/picoblaze-S3-V2-Pro.htm

