References:

PicoBlaze manual

http://www.Xxilinx.com/support/documentation/user gquides/ug129.pdf
PicoBlaze: http://www.xilinx.com/products/ipcenter/PicoBlaze-S3-V 2-Pro.htm
VHDL template: http://www.mediatronix.com/code/ROM_blank.vhd

pBlazel DE:http://www.mediatronix.com/pBlazel DE.htm

SETUP

1. Download PicoBlaze (Registration required):

http://www.xilinx.com/products/ipcenter/PicoBlaze-S3-V 2-Pro.htm

Download the PicoBlaze IDE: http://www.mediatronix.com/pBlazel DE.htm

Download the VHDL template from here

http://www.mediatronix.com/code/ROM _blank.vhd

Extract PicoBlaze and the PicoBlaze IDE.

Add all of the PicoBlaze filesto your project in Xilinx.

Run PicoBlaze IDE (requires no installation)

Write assembly program. (see below for details)

Assemble the program, thiswill generate a VHD file.

Add the new VHD file to the project in Xilinx.

0. Link the new VHDL module created by the PicoBlaze IDE into the VHDL
template

11. Build and download the VHDL to the FPGA.

wWnN

ROO~NO O A

To write a PicoBlaze program, start with the code template, which can be found
in the PicoBlaze manual, then use the PicoBlaze manual as areference for the assembly
language that is used. The first thing to note in the code template is the line that begins
with VHDL, this line specifies the name of the VHDL template that will be used when
assembling (use the template downloaded from Mediatonix as a base), the name of the
output VHD file which the assembler will create, and the name of the module that will
contain the assembled code.

In order to interface with the VHDL setup running outside of PicoBlaze, simply
declare a new port, using the statement “name DSIN port” or “name DSOUT port” where
name is the name you want to assign to the port, and port is a number representing what
port you are creating. Onthe VHDL side of the interface, thereisasingle signal for in-
put and a single signal for output, so to gain access to the different ports you create a
multiplexer based on the port numbers assigned in the assembly code. The IDE includes
in it acompiler and a simulator, use the simulator to thoroughly test the assembly code,
as it shows the values of all available registers as well as all input and output ports. This
is the best way to debug the assembly code because once you get the code running in the
actual FPGA thereis limited access to information for debugging.

To add the PicoBlaze processor into aVHDL file, components must be declared
for both the processor and the program. To declare components, copy the following code
into the VHDL file, in the same entity declaration where signals are declared (before
“begin”). The signals are not necessary, but useful

http://www.xilinx.com/support/documentation/user_guides/ug129.pdf
http://www.xilinx.com/products/ipcenter/PicoBlaze-S3-V2-Pro.htm
http://www.mediatronix.com/code/ROM_blank.vhd
http://www.mediatronix.com/pBlazeIDE.htm
http://www.xilinx.com/products/ipcenter/PicoBlaze-S3-V2-Pro.htm
http://www.mediatronix.com/pBlazeIDE.htm
http://www.mediatronix.com/code/ROM_blank.vhd

conponent <programentity nane, found in output from assenbl er>

port (

)

address : in std_logic_vector(9 downto 0);
instruction : out std_|logic_vector(17 downto 0);
clk : in std_logic

end conponent;

conmponent KCPSMB

port (

)

si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal

address : out std_logic_vector(9 downto 0);
instruction : in std_logic_vector(17 downto 0);
port_id : out std_logic_vector(7 downto O);
wite strobe : out std_logic;

out _port : out std_logic_vector(7 downto 0);
read_strobe : out std_| ogic;

in_port : in std_logic_vector(7 dowmto 0);
interrupt : in std_logic;
interrupt_ack : out std_| ogic;
reset : in std_|ogic;
clk : in std_logic
i nstruction_signal : std_Logic_vector(17 downto 0);
addr ess_si gnal : std_logic_vector(9 downto 0);
port _id_signal : std_logic_vector(7 downto 0);
out _port _si gnal : std_logic_vector(7 downto 0);
i n_port_signal : std_logic_vector(7 downto 0);
write_strobe_signal : std_Il ogic;
read_strobe_si gnal : std_Il ogic;
i nterrupt_signal : std_logic
i nterrupt_ack_si gnal : std_Il ogic;
reset _si gnal : std_Il ogic;
cl k_si gnal : std_Il ogic;

Next, instances of these components must be added into the VHDL behavioral
section. The following code creates one of each component and “wires’ it to the signals
declared above.

processor: kcpsnB

port map(

address => address_si gnal
instruction => instruction_signal
port_id => port_id_signal

wite strobe => wite_strobe_signal
out _port => out_port_signal
read_strobe => read_strobe_signal
in_port => in_port_signal

interrupt => interrupt_signal

i nterrupt_ack => interrupt_ack_signal
reset => reset_signal

clk => clk_signa

)

program proof Program
port map(address => address_signal,
i nstruction => instruction_signal,
cl k => cl k_signal

To use these components, Simply connect the signals to other components or input
and output switches. For ssimple programs (with only one input and one output port for
the processor), no multiplexer is needed, and the port_id can be ignored. A simple pro-
gram, good for testing the PicoBlaze functionality, is connecting the in_port_signal di-
rectly to the FPGA board's switches, and the output port to the LEDs. Write some simple
program for the PicoBlaze that continuously reads the inputs and writes to the outputs to
verify that PicoBlaze is being used properly.

