
PAETEC

Product Catalog Editor

Test Plan Document

TestPlan.doc
Draft 1.6
March 17, 2009

Team Spy Penguins

Revisions

	Version
	Primary Author(s)
	Description of Version
	Date Completed

	1.0
	Tom Sheppard
	Initial Revision
	3/8/09

	1.1
	Phillip Schmitte
	Fixed headers and footers
	3/8/09

	1.2
	Tom Sheppard
	Updated table of contents
	3/9/09

	1.3
	Robert Marinaro
	Added testing documentation section
	3/10/09

	1.4
	Robert Marinaro
	Cleaned up last version, removed all references to release 3.
	3/12/09

	1.5
	Joe Plourde, Rob Marinaro, Mark Chadbourne, Phil Schmitte
	Cleaned up document, added details for each Test approach section and edited the testing by release section.
	3/15/09

	1.6
	Phil, Joe, Rob
	Added test stuff
	3/17/09

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Contents

11 Introduction

11.1 Overview

22 Test Approaches

22.1 Unit Testing

22.1.1 Purpose

22.1.2 Stage

22.1.3 Procedure

22.2 Integration Testing

22.2.1 Purpose

22.2.2 Stage

22.2.3 Procedure

22.3 Acceptance Testing

22.3.1 Purpose

32.3.2 Stage

32.3.3 Procedure

32.4 Regression Testing

32.4.1 Purpose

32.4.2 Stage

32.4.3 Procedure

43 Testing By Release

43.1 Test Cases and Test Sections

43.1.1 Test Sections

43.1.2 Test Cases

43.2 Release 1

43.2.1 Subsystems

43.2.2 Use Cases

43.3 Release 2

43.3.1 Subsystems

23.3.2 Use Cases

14 Testing Documentation

14.1 Test Result Document

1 Introduction

1.1 Overview

This document provides a description of the projects testing plans and procedures. The main focus of the document will be to describe the types of testing that will be used for verification and validation the project. The sections of the implementation that will be tested for each release will also be covered in this document. Procedures for specific tests will be enumerated during the testing phase of each release. The order used in the Test Approach section of this document will be the order of test execution during each release.
2 Test Approaches

2.1 Unit Testing

2.1.1 Purpose

Unit testing will be used to ensure that each function in the project performs as intended. Sufficient unit testing reduces the complexity of later debugging, as developers can be sure that the functions they are calling behave correctly.

2.1.2 Stage

Every time a function changes, the corresponding unit tests will be run. There will also be a weekly run of the entire unit test suite; unless no code changes have been introduced.

2.1.3 Procedure

Whenever a developer creates a new function, that developer will add one or more unit tests for that function. Developers must also update unit tests if necessary when modifying the corresponding function.

Unit testing will cover the implementation of release 1, as well as parts of release 2. The parts of the release 2 implementation relating only to the user interface will not be unit tested, as these tests often boil down to setting a value on the UI, then checking that value. This can be done more effectively through integration testing in a non-automated manner.

2.2 Integration Testing

2.2.1 Purpose

Integration testing will be performed to ensure that all subsystems work together as intended.

2.2.2 Stage

These series of tests will be performed at the very beginning of the testing phase of each release, as well as when a subsystem is completed, or undergoes major modifications.
2.2.3 Procedure

The Test Results document will contain a section for integration testing and will contain a series of test that will be used to verify correct subsystems communication. Integration tests will be run as soon as all of the subsystems related to the test are implemented, when one or more of the subsystems are modified and once more at the beginning of the testing phase for the release.

2.3 Acceptance Testing

2.3.1 Purpose

Acceptance testing will be performed to ensure that all use cases are satisfied

2.3.2 Stage

These series of tests will be run during the test phase after integration testing.
2.3.3 Procedure

Blueprint will be used as a primary tool for acceptance testing. Each use case will be analyzed, and the testing must cover each possible branch of execution through the use case. The use cases shall be grouped together to form a test section of common functionality, such as a test section for features, to be covered during the testing process.

Acceptance test cases will be used in both releases 1 and 2. During release 1 acceptance tests shall consist of server side functionality that will be tested using a test class with scripted system interaction. Release 2 will focus more on utilizing the user interface and the relay of information between the client and the server. For example, testing “Create a Product” in release 1 will ensure that product data is properly translated to XML and stored in SVN. Testing “Create a Product” in release 2 will ensure the data entered by the user successfully makes it to the server to be translated as in release 1.

2.4 Regression Testing

2.4.1 Purpose

Regression testing will be performed to ensure that new development does not corrupt previously working functionality.

2.4.2 Stage

Regression tests will be run at the end of the testing phase for each release. The tests will aid in the detection of bugs introduced during the Bug Fix stage. Defects will be classified using a scale of 1 to 5, where 1 is a high severity and 5 is a low severity. To proceed to next stage of implementation all severity 1 and 2 defects will need to be resolved.
2.4.3 Procedure

A regression test suite will be developed at the end of the testing phase of each release. When a defect is uncovered it will be assigned a number based on its severity and assigned to a developer to fix. After all defects fixes are committed to the build, the regression test suite will be rerun to determine the fixes affects on the system.
3 Testing By Release

3.1 Test Cases and Test Sections

3.1.1 Test Sections

Related use cases will be grouped together for ease of result processing and organization. For example Create a Feature, Edit a Feature and Delete a Feature will belong to the same “Feature Test Section.”
3.1.2 Test Cases

For each use case multiple test cases will be developed based upon the alternative flows of a use case and we will ensure that each major branch of the use case can be executed correctly. For more details on the test case identities, please see the Requirements document.
3.2 Release 1

3.2.1 Subsystems

· Entity Management

· XML/Persistence
3.2.2 Use Cases

· Create a Feature

· Deleting a Feature

· Edit a Feature

· Create an Attribute

· Create a Product

· Create a Product Catalog

· Create a Connection Number

· Edit a connection number

· Delete a Connection Number

· Edit a Product

· Delete a Product

· Delete a Product Catalog

· Create Product Catalog Version

· Create a Business Rule

· Delete a Business Rule

· Add an Existing Product to another Product

· Delete an Attribute

· Edit an Attribute

· Edit a Business Rule

· Create a Conditional Attribute

· Edit a Conditional Attribute

· Delete a Conditional Attribute

3.3 Release 2

3.3.1 Subsystems

· UI View

· UI Manager

3.3.2 Use Cases

· Access the Product Catalog Editor System

· Create a Feature

· Deleting a Feature

· Edit a Feature

· Create an Attribute

· Create a Product

· Create a Product Catalog

· Compare Versions of Products

· Create a Connection Number

· View a Product

· Edit a connection number

· Delete a Connection Number

· Edit a Product

· Delete a Product

· Delete a Product Catalog

· View a Product Catalog

· Create Product Catalog Version

· Compare Product Catalog Versions

· Create a Business Rule

· Delete a Business Rule

· View a Business Rule

· View Feature

· View Connection Number

· Add an Existing Product to another Product

· View Attribute

· Delete an Attribute

· Edit an Attribute

· Edit a Business Rule

· Create a Conditional Attribute

· Edit a Conditional Attribute

· Delete a Conditional Attribute

· View Conditional Attribute

4 Testing Documentation

4.1 Test Result Document

When performing tests, regardless of approach, the user will be required to fill out a spreadsheet. This spreadsheet will contain several columns, including: the current user, the test being performed and the date the test was attempted. There will also be a pass/fail section, stating whether the test passed or failed, and a section for the result of the test, which would document any unforeseen results, or reasons why the test failed.

[image: image1.wmf]