SWEN-220
Mathematical Models of Software

Normalization
Well Structured Relations

• Contain minimal *redundancy* (data duplication).

• Allow users to insert, delete and modify data without *anomalies* – errors or inconsistencies that result when updating a relation that contains redundant data.

 – Insertion Anomaly
 – Deletion Anomaly
 – Modification Anomaly
Maintaining Consistency

Consider the following relation:

$$\text{SIS}(\text{dept, num, sec, ms, days, time, room, cap, inst})$$

And this example table:

SIS

<table>
<thead>
<tr>
<th>dept</th>
<th>num</th>
<th>sec</th>
<th>ms</th>
<th>days</th>
<th>time</th>
<th>room</th>
<th>cap</th>
<th>inst</th>
</tr>
</thead>
<tbody>
<tr>
<td>se</td>
<td>220</td>
<td>01</td>
<td>M</td>
<td>MWF</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>220</td>
<td>02</td>
<td>M</td>
<td>TR</td>
<td>9:30</td>
<td>1550</td>
<td>40</td>
<td>ML</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>01</td>
<td>S</td>
<td>TR</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>02</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>1530</td>
<td>20</td>
<td>KM</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>01</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>2200</td>
<td>20</td>
<td>SS</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>02</td>
<td>S</td>
<td>TR</td>
<td>9:20</td>
<td>2200</td>
<td>20</td>
<td>JH</td>
</tr>
</tbody>
</table>

$\text{ms} = \text{major (M), service (S) or both (MS)}$

$\text{cap} = \text{capacity}$

$\text{inst} = \text{instructor}$
Consider the following relation:

\[\text{SIS}(\text{dept}, \text{num}, \text{sec}, \text{ms}, \text{days}, \text{time}, \text{room}, \text{cap}, \text{inst}) \]

And this example table:

<table>
<thead>
<tr>
<th>dept</th>
<th>num</th>
<th>sec</th>
<th>ms</th>
<th>days</th>
<th>time</th>
<th>room</th>
<th>cap</th>
<th>inst</th>
</tr>
</thead>
<tbody>
<tr>
<td>se</td>
<td>220</td>
<td>01</td>
<td>M</td>
<td>MWF</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>220</td>
<td>02</td>
<td>M</td>
<td>TR</td>
<td>9:30</td>
<td>1550</td>
<td>40</td>
<td>ML</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>01</td>
<td>S</td>
<td>TR</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>02</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>1530</td>
<td>20</td>
<td>KM</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>01</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>2200</td>
<td>20</td>
<td>SS</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>02</td>
<td>S</td>
<td>TR</td>
<td>9:20</td>
<td>2200</td>
<td>20</td>
<td>JH</td>
</tr>
</tbody>
</table>

ms = major (M), service (S) or both (MS)
cap = capacity
inst = instructor

What's wrong with this picture?
Maintaining Consistency

Consider the following relation:

\[
\text{SIS(dept, num, sec, ms, days, time, room, cap, inst)}
\]

And this example table:

<table>
<thead>
<tr>
<th>dept</th>
<th>num</th>
<th>sec</th>
<th>ms</th>
<th>days</th>
<th>time</th>
<th>room</th>
<th>cap</th>
<th>inst</th>
</tr>
</thead>
<tbody>
<tr>
<td>se</td>
<td>220</td>
<td>01</td>
<td>M</td>
<td>MWF</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>220</td>
<td>02</td>
<td>M</td>
<td>TR</td>
<td>9:30</td>
<td>1550</td>
<td>40</td>
<td>ML</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>01</td>
<td>S</td>
<td>TR</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>02</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>1530</td>
<td>20</td>
<td>KM</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>01</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>2200</td>
<td>20</td>
<td>SS</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>02</td>
<td>S</td>
<td>TR</td>
<td>9:20</td>
<td>2200</td>
<td>20</td>
<td>JH</td>
</tr>
</tbody>
</table>

What's wrong with this picture?

REDUNDANCY!

Multiple copies of:

- major / service (ms)
- room capacity

Think about changing:

- capacity of room 1550
- 220 from M to MS

Violates the DRY principle
(Don’t Repeat Yourself)

Let’s see why.

\[ms = \text{major (M), service (S) or both (MS)} \]
\[cap = \text{capacity} \]
\[inst = \text{instructor} \]
Maintaining Consistency

SIS(dept, num, sec, ms, days, time, room, cap, inst)

<table>
<thead>
<tr>
<th>dept</th>
<th>num</th>
<th>sec</th>
<th>ms</th>
<th>days</th>
<th>time</th>
<th>room</th>
<th>cap</th>
<th>inst</th>
</tr>
</thead>
<tbody>
<tr>
<td>se</td>
<td>220</td>
<td>01</td>
<td>M</td>
<td>MWF</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>220</td>
<td>02</td>
<td>M</td>
<td>TR</td>
<td>9:30</td>
<td>1550</td>
<td>40</td>
<td>ML</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>01</td>
<td>S</td>
<td>TR</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>02</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>1530</td>
<td>20</td>
<td>KM</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>01</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>2200</td>
<td>20</td>
<td>SS</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>02</td>
<td>S</td>
<td>TR</td>
<td>9:20</td>
<td>2200</td>
<td>20</td>
<td>JH</td>
</tr>
</tbody>
</table>

ms = major (M), service (S) or both (MS)
cap = capacity
inst = instructor

What is/are candidate key(s)?
Maintaining Consistency

SIS$(\text{dept, num, sec, ms, days, time, room, cap, inst})$

<table>
<thead>
<tr>
<th>dept</th>
<th>num</th>
<th>sec</th>
<th>ms</th>
<th>days</th>
<th>time</th>
<th>room</th>
<th>cap</th>
<th>inst</th>
</tr>
</thead>
<tbody>
<tr>
<td>se</td>
<td>220</td>
<td>01</td>
<td>M</td>
<td>MWF</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>220</td>
<td>02</td>
<td>M</td>
<td>TR</td>
<td>9:30</td>
<td>1550</td>
<td>40</td>
<td>ML</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>01</td>
<td>S</td>
<td>TR</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>02</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>1530</td>
<td>20</td>
<td>KM</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>01</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>2200</td>
<td>20</td>
<td>SS</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>02</td>
<td>S</td>
<td>TR</td>
<td>9:20</td>
<td>2200</td>
<td>20</td>
<td>JH</td>
</tr>
</tbody>
</table>

ms = major (M), service (S) or both (MS)
cap = capacity
inst = instructor

What is/are candidate key(s)?
dept + num + sec
Maintaining Consistency

SIS(dept, num, sec, ms, days, time, room, cap, inst)

What is/are candidate key(s)?

dept + num + sec

Do we need sec to determine major/service?

Do we need dept + num + sec to determine room capacity?

<table>
<thead>
<tr>
<th>dept</th>
<th>num</th>
<th>sec</th>
<th>ms</th>
<th>days</th>
<th>time</th>
<th>room</th>
<th>cap</th>
<th>inst</th>
</tr>
</thead>
<tbody>
<tr>
<td>se</td>
<td>220</td>
<td>01</td>
<td>M</td>
<td>MWF</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>220</td>
<td>02</td>
<td>M</td>
<td>TR</td>
<td>9:30</td>
<td>1550</td>
<td>40</td>
<td>ML</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>01</td>
<td>S</td>
<td>TR</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>02</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>1530</td>
<td>20</td>
<td>KM</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>01</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>2200</td>
<td>20</td>
<td>SS</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>02</td>
<td>S</td>
<td>TR</td>
<td>9:20</td>
<td>2200</td>
<td>20</td>
<td>JH</td>
</tr>
</tbody>
</table>

ms = major (M), service (S) or both (MS)
cap = capacity
inst = instructor
Maintaining Consistency

SIS(\text{dept, num, sec, ms, days, time, room, cap, inst})

<table>
<thead>
<tr>
<th>dept</th>
<th>num</th>
<th>sec</th>
<th>ms</th>
<th>days</th>
<th>time</th>
<th>room</th>
<th>cap</th>
<th>inst</th>
</tr>
</thead>
<tbody>
<tr>
<td>se</td>
<td>220</td>
<td>01</td>
<td>M</td>
<td>MWF</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>220</td>
<td>02</td>
<td>M</td>
<td>TR</td>
<td>9:30</td>
<td>1550</td>
<td>40</td>
<td>ML</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>01</td>
<td>S</td>
<td>TR</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>02</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>1530</td>
<td>20</td>
<td>KM</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>01</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>2200</td>
<td>20</td>
<td>SS</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>02</td>
<td>S</td>
<td>TR</td>
<td>9:20</td>
<td>2200</td>
<td>20</td>
<td>JH</td>
</tr>
</tbody>
</table>

\(\text{ms} = \text{major (M), service (S) or both (MS)}\)
\(\text{cap} = \text{capacity}\)
\(\text{inst} = \text{instructor}\)

What is/are candidate key(s)?

\text{dept + num + sec}

Do we need \text{sec} to determine \text{major/service}?
Do we need \text{dept + num + sec} to determine \text{room capacity}?

That's the source of our problem.
Our relation is \textit{unnormalized}.

Maintaining Consistency

What is/are candidate key(s)?

depth + num + sec

Do we need sec to determine major/service?

Do we need dept + num + sec to determine room capacity?

That's the source of our problem.

Our relation is unnormalized.

How to we fix this?

<table>
<thead>
<tr>
<th>dept</th>
<th>num</th>
<th>sec</th>
<th>ms</th>
<th>days</th>
<th>time</th>
<th>room</th>
<th>cap</th>
<th>inst</th>
</tr>
</thead>
<tbody>
<tr>
<td>se</td>
<td>220</td>
<td>01</td>
<td>M</td>
<td>MWF</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>220</td>
<td>02</td>
<td>M</td>
<td>TR</td>
<td>9:30</td>
<td>1550</td>
<td>40</td>
<td>ML</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>01</td>
<td>S</td>
<td>TR</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>02</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>1530</td>
<td>20</td>
<td>KM</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>01</td>
<td>S</td>
<td>MWF</td>
<td>9:00</td>
<td>2200</td>
<td>20</td>
<td>SS</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>02</td>
<td>S</td>
<td>TR</td>
<td>9:20</td>
<td>2200</td>
<td>20</td>
<td>JH</td>
</tr>
</tbody>
</table>

ms = major (M), service (S) or both (MS)
cap = capacity
inst = instructor
Normalization

• Normalization is a set of transformations whose goal is reducing data duplication in relations.

• Doing so reduces the risk of insert, update & delete anomalies.

• Normalization introduces new relations to "factor out" duplicates.

• Our focus: The first three normalizations (normal forms).
 – 1NF, 2NF, 3NF
 – A relation normalized at level N is also normalized at all levels less than N.
 – There are levels beyond 3NF, but they are:
 • Rarely used in practice.
 • Address unusual and esoteric redundancies.

• To normalize, we have to know about functional dependencies.
Functional Dependency

Consider a relation \(R(a_1, a_2, \ldots a_N) \)

Assume that if we know attributes \(a_i, a_j \) then we also know \(a_k, a_m, \) and \(a_n \) uniquely.

Then \(a_k, a_m, \) and \(a_n \) are *functionally dependent* on \(a_i \) and \(a_j \), written:

\[
a_i, a_j \rightarrow a_k, a_m, a_n
\]
Using Our Example

\[SIS(\text{dept}, \text{num}, \text{sec}, \text{ms}, \text{days}, \text{time}, \text{room}, \text{cap}, \text{inst}) \]

By definition, *non-candidate key attributes are dependent on any candidate key:*
Using Our Example

\[
\text{SIS(\text{dept}, \text{num}, \text{sec}, \text{ms}, \text{days}, \text{time}, \text{room}, \text{cap}, \text{inst})}
\]

By definition, \textit{non-candidate key attributes are dependent on any candidate key}:

\[
\text{dept, num, sec} \rightarrow \text{ms, days, time, room, cap, inst}
\]
Using Our Example

SIS(\texttt{dept, num, sec, ms, days, time, room, cap, inst})

By definition, non-candidate key attributes are dependent on any candidate key:
\texttt{dept, num, sec \rightarrow ms, days, time, room, cap, inst}

But \texttt{ms} only depends on the department and course number:
\texttt{dept, num \rightarrow ms}
Using Our Example

\[
\text{SIS}(\text{dept, num, sec, ms, days, time, room, cap, inst})
\]

By definition, *non-candidate key attributes are dependent on any candidate key*:

\[
\text{dept, num, sec} \rightarrow \text{ms, days, time, room, cap, inst}
\]

But ms only depends on the department and course number:

\[
\text{dept, num} \rightarrow \text{ms}
\]

This is a *partial key dependency*.
Using Our Example

SIS(dept, num, sec, ms, days, time, room, cap, inst)

By definition, *non-candidate key attributes are dependent on any candidate key*:
\[\text{dept, num, sec} \rightarrow \text{ms, days, time, room, cap, inst} \]

But ms only depends on the department and course number:
\[\text{dept, num} \rightarrow \text{ms} \]

This is a *partial key dependency*.

And capacity only depends on the room (not part of the key):
\[\text{room} \rightarrow \text{cap} \]
Using Our Example

SIS(dept, num, sec, ms, days, time, room, cap, inst)

By definition, non-candidate key attributes are dependent on any candidate key:

\[\text{dept, num, sec} \rightarrow \text{ms, days, time, room, cap, inst} \]

But ms only depends on the department and course number:

\[\text{dept, num} \rightarrow \text{ms} \]

This is a \textit{partial key dependency} - we eliminate this in 2NF.

And capacity only depends on the room (not part of the key):

\[\text{room} \rightarrow \text{cap} \]

This is a \textit{transitive dependency}.
The Three Main Normal Forms Defined

1NF - Dependent on the key.
 Given a candidate key (simple or composite), every other attribute is dependent on the key.

2NF - The whole key.
 Given a composite candidate key, every non-key attribute is dependent on the *all* the attributes in the candidate key. That is, there are no *partial key* dependencies.

3NF - And nothing but the key.
 Given a candidate key, no non-key attribute is dependent on any attributes that are not in the candidate key. That is, no *transitive* dependencies.
1NF - The base

• Every relation we develop from a well-formed ERD is technically in 1NF.
• This is true even if we use a sub-optimal approach to multi-valued attributes.
• However, "factoring out" multi-value attributes is usually considered the prerequisite to 1NF.
• As we know how to do this, we'll simply assume we have 1NF relations.
• $\text{SIS}(\text{dept, num, sec, ms, days, time, room, cap, inst})$ is in 1NF
2NF - No partial key dependencies

Every non-key attribute depends on the whole key. This is only a problem with composite keys (why?)
2NF - No partial key dependencies

Every non-key attribute depends on the whole key. This is only a problem with composite keys (why?)

Our SIS example has a partial key dependency:

\[\text{SIS}(\text{dept}, \text{num}, \text{sec}, \text{ms}, \text{days}, \text{time}, \text{room}, \text{cap}, \text{inst}) \]

- \text{dept, num, sec} \rightarrow \text{ms, days, time, room, cap, inst}
- \text{dept, num} \rightarrow \text{ms}

\text{dept, num} \rightarrow \text{ms}
Normalizing 1NF to 2NF

SIS(dept, num, sec, ms, days, time, room, cap, inst)

department, course → offerings, instructors

department, course → ms

department, course → ms

1. Extract the partial dependency into its own relation:

 CourseCategory(department, course, offering)
Normalizing 1NF to 2NF

SIS(dept, num, sec, ms, days, time, room, cap, inst)
 dept, num, sec → ms, days, time, room, cap, inst
 dept, num → ms

1. Extract the partial dependency into its own relation:
 CourseCategory(dept, num, ms)

2. Make the partial dependency key into the primary key:
 CourseCategory(dept, num, ms)
Normalizing 1NF to 2NF

\[
SIS(\text{dept}, \text{num}, \text{sec}, \text{ms}, \text{days}, \text{time}, \text{room}, \text{cap}, \text{inst}) \\
\text{dept, num, sec } \rightarrow \text{ ms, days, time, room, cap, inst } \\
\text{dept, num } \rightarrow \text{ ms }
\]

1. Extract the partial dependency into its own relation:
 \[
 \text{CourseCategory(dept, num, ms)}
 \]

2. Make the partial dependency key into the primary key:
 \[
 \text{CourseCategory(dept, num, ms)}
 \]

3. Remove dependent attribute(s) from the original relation - here ms:
 \[
 SIS(\text{dept, num, sec, days, time, room, cap, inst})
 \]
Normalizing 1NF to 2NF

\begin{itemize}
\item SIS(\texttt{dept, num, sec, ms, days, time, room, cap, inst })
\item dept, num, sec → ms, days, time, room, cap, inst
\item dept, num → ms
\item 1. Extract the partial dependency into its own relation:
 CourseCategory(\texttt{dept, num, ms })
\item 2. Make the partial dependency key into the primary key:
 CourseCategory(\texttt{dept, num, ms })
\item 3. Remove dependent attribute(s) from the original relation - here \texttt{ms}:
 SIS(\texttt{dept, num, sec, days, time, room, cap, inst })
\item 4. Turn partial key in original relation into a foreign key to the new relation:
 SIS(\texttt{dept, num, sec, days, time, room, cap, inst })
 (\texttt{dept, num}) refers to (\texttt{dept, num}) in CourseCategory.
\end{itemize}
Tables After Normalization

The SIS table is as follows:

\[
\text{SIS(} \text{dept, num, sec, days, time, room, cap, inst} \text{)}
\]

(dept, num) refers to (dept, num) in CourseCategory

CourseCategory(dept, num, ms)

SIS

<table>
<thead>
<tr>
<th>dept</th>
<th>num</th>
<th>sec</th>
<th>days</th>
<th>time</th>
<th>room</th>
<th>cap</th>
<th>inst</th>
</tr>
</thead>
<tbody>
<tr>
<td>se</td>
<td>220</td>
<td>01</td>
<td>MWF</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>220</td>
<td>02</td>
<td>TR</td>
<td>9:30</td>
<td>1550</td>
<td>40</td>
<td>ML</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>01</td>
<td>TR</td>
<td>11:00</td>
<td>1550</td>
<td>40</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>02</td>
<td>MWF</td>
<td>9:00</td>
<td>1530</td>
<td>20</td>
<td>KM</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>01</td>
<td>MWF</td>
<td>9:00</td>
<td>2200</td>
<td>20</td>
<td>SS</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>02</td>
<td>TR</td>
<td>9:20</td>
<td>2200</td>
<td>20</td>
<td>JH</td>
</tr>
</tbody>
</table>

CourseCategory

<table>
<thead>
<tr>
<th>dept</th>
<th>num</th>
<th>ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>se</td>
<td>220</td>
<td>M</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>S</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>S</td>
</tr>
</tbody>
</table>
3NF - No transitive dependencies

Every non-key attribute depends on nothing but the whole key.
3NF - No transitive dependencies

Every non-key attribute depends on nothing but the whole key. Our 2NF SIS example has a *transitive dependency*:

SIS(\text{dept, num, sec, days, time, room, cap, inst})

\text{dept, num, sec} \rightarrow \text{days, time, room, cap, inst}

\text{room} \rightarrow \text{cap}
3NF - No transitive dependencies

Every non-key attribute depends on nothing but the whole key.

Our 2NF SIS example has a *transitive dependency*:

\[
\text{SIS(} \text{dept, num, sec, days, time, room, cap, inst)} \\
\text{dept, num, sec } \rightarrow \text{ days, time, room, cap, inst} \\
\text{room } \rightarrow \text{ cap}
\]

This is *transitive* because:

- If I know dept, num, sec then I know the room.
- If I know the room then I know the capacity.
Normalizing 2NF to 3NF

\[\text{SIS(dept, num, sec, days, time, room, cap, inst)} \]
\[\text{dept, num, sec } \rightarrow \text{ days, time, room, cap, inst} \]
\[\text{room } \rightarrow \text{ cap} \]

1. Extract the transitive dependency into its own relation:

\[\text{Capacity(room, cap)} \]
Normalizing 2NF to 3NF

SIS(dept, num, sec, days, time, room, cap, inst)
 dept, num, sec → days, time, room, cap, inst
 room → cap

1. Extract the transitive dependency into its own relation:
 Capacity(room, cap)

2. Make the transitive dependency key into the primary key:
 Capacity(room, cap)
Normalizing 2NF to 3NF

SIS(dept, num, sec, days, time, room, cap, inst)
 dept, num, sec \rightarrow days, time, room, cap, inst
 room \rightarrow cap

1. Extract the transitive dependency into its own relation:
 Capacity(room, cap)

2. Make the transitive dependency key into the primary key:
 Capacity(room, cap)

3. Remove dependent attribute(s) from the original relation - here cap:
 SIS(dept, num, sec, days, time, room, inst)
Normalizing 2NF to 3NF

SIS(dept, num, sec, days, time, room, cap, inst)
 dept, num, sec → days, time, room, cap, inst
 room → cap
1. Extract the transitive dependency into its own relation:
 Capacity(room, cap)
2. Make the transitive dependency key into the primary key:
 Capacity(room, cap)
3. Remove dependent attribute(s) from the original relation - here cap:
 SIS(dept, num, sec, days, time, room, inst)
4. Make original relation transitive key a foreign key to the new relation:
 SIS(dept, num, sec, days, time, room, inst)
 room refers to room in Capacity.
Tables After Normalization

SIS(\(\text{dept, num, sec, days, time, room, inst} \))

(\(\text{dept, num} \)) refers to (\(\text{dept, num} \)) in CourseCategory
room refers to room in Capacity

CourseCategory(\(\text{dept, num, ms} \))
Capacity(\(\text{room, cap} \))

SIS

<table>
<thead>
<tr>
<th>dept</th>
<th>num</th>
<th>sec</th>
<th>days</th>
<th>time</th>
<th>room</th>
<th>inst</th>
</tr>
</thead>
<tbody>
<tr>
<td>se</td>
<td>220</td>
<td>01</td>
<td>MWF</td>
<td>11:00</td>
<td>1550</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>220</td>
<td>02</td>
<td>TR</td>
<td>9:30</td>
<td>1550</td>
<td>ML</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>01</td>
<td>TR</td>
<td>11:00</td>
<td>1550</td>
<td>TR</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>02</td>
<td>MWF</td>
<td>9:00</td>
<td>1530</td>
<td>KM</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>01</td>
<td>MWF</td>
<td>9:00</td>
<td>2200</td>
<td>SS</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>02</td>
<td>TR</td>
<td>9:20</td>
<td>2200</td>
<td>JH</td>
</tr>
</tbody>
</table>

Capacity

<table>
<thead>
<tr>
<th>room</th>
<th>cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1530</td>
<td>20</td>
</tr>
<tr>
<td>1550</td>
<td>40</td>
</tr>
<tr>
<td>2200</td>
<td>20</td>
</tr>
</tbody>
</table>

CourseCategory

<table>
<thead>
<tr>
<th>dept</th>
<th>num</th>
<th>ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>se</td>
<td>220</td>
<td>M</td>
</tr>
<tr>
<td>se</td>
<td>383</td>
<td>S</td>
</tr>
<tr>
<td>cs</td>
<td>220</td>
<td>S</td>
</tr>
</tbody>
</table>
RSN to SQL

SIS(dept, num, sec, days, time, room, inst)
(dept, num) refers to (dept, num) in CourseCategory
room refers to room in Capacity

CourseCategory(dept, num, ms)

Capacity(room, cap)

CREATE TABLE Capacity (
 room STRING PRIMARY KEY,
 cap INTEGER,
) ;

CREATE TABLE CourseCategory (
 dept STRING,
 num INTEGER,
 ms STRING,
 PRIMARY KEY (dept, cnum)
) ;

CREATE TABLE SIS(
 dept STRING,
 num INTEGER,
 sec INTEGER,
 days STRING,
 time STRING,
 inst STRING,
 room STRING REFERENCES Capacity(room),
 PRIMARY KEY (dept, num, sec),
 FOREIGN KEY (dept, num) REFERENCES CourseCategory(dept, cnum)
) ;
How Do Unnormalized Relations Arise?

1. Sometimes as a result of mediocre ER models.
2. Sometimes from increased information about the domain.
3. Sometimes because of database refactoring.
4. Sometimes as a performance compromise (joins ain't cheap!).
 - Normalization means more tables.
 - SQL Queries require that tables be joined to perform the query – means more time & space required.
5. Sometimes when converting a "spreadsheet" database into a "real" database.